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Figure 8: The x-axis represents metric scores for uniform dim-
ming, and the y-axis metric scores for ML-PEA. Scatter color is
power saved (%), and the identity line is plotted as a black dashed
line. Higher scores equal higher predicted quality.

8. Image Quality Metric Results671

We ran three metrics on the test dataset from DIV2k: PSNR, SSIM,672

and ColorVideoVDP. The results are shown in Figure 8, where each673

scatter point corresponds to one of the 100 test images from the674

DIV2k test dataset. Note that this plot shows results for the three675

target power saving rates, so in total there are 300 scatter points for676

each metric. A model can be considered to perform well if scatter677

points lie above the identity line, i.e. metric scores for ML-PEA678

output is higher than scores for uniformly-dimming images.679

Selection of PSNR and SSIM as evaluation metrics is based680

on prior art, which use these metrics to evaluate their mod-681

els [SDLM24, ADMM25, LMDB23]. The inclusion of Col-682

orVideoVDP [MHA∗24] was meant to introduce a modern metric683

based on low-level models of human vision, trained on display-684

related distortions.685

9. Additional Ablation Studies686

Here, we discuss additional ablation studies and experiments,687

meant to supplement the discussion from Section 4.2.688

9.1. Ablating Loss Weights689

We conducted an ablation on the loss function weights, as described690

in Section 4.2. The following weights were studied in this experi-691

ment:692

• λP : {5.0, 50.0}693

• λVGG : {0.0, 0.05, 0.5}694

• λSSIM : {0.0, 0.5, 5.0}.695

The results for each combination of parameters are shown,696

for power saving targets of 17%, 32%, and 45% (α =697

{0.83, 0.68, 0.45}), in Table 2. Cell colors represent first ,698

second , and third -best performance. Note that the column699

“Power Target - Pred.” represents the quantity700

∆P = 100 · (1−α)−100 · (1−P(I∗)/P(I)), (9)

which is essentially the difference in power savings between the701

optimized image I∗ and the target power saving rate. It is impor-702

tant that the model outputs images which closely match the target703

power saving rate, and so models that have a value of ∆P close to704

0 are ideal. Here, we recall that α is the target proportion of power705

consumed by the target, relative to the input. In other words, if we706

define T as the target power savings (%), then T = 100 · (1−α).707

One important note is that the rankings in Table 2 do not paint a708

complete story – while we show which combination of parameters709

perform best in terms of a number of common image quality met-710

rics, these naturally depend on the accuracy of the model to produce711

images with power savings close to the target. In other words, when712

inspecting Table 2 we notice that PSNR, SSIM, and CVVDP scores713

are typically highest for ∆P with large magnitude (or models that714

do not approximate the target power savings well). As a result, it is715

important to jointly consider ∆P as well as the metric scores to find716

a fine balance between the two when selecting model parameters.717

The ability to control the power savings of the model’s output is718

crucial to its performance, and the core problem in our constrained719

optimization. In our experiments, we used the parameters of the last720

row in each α block (λP = 50.0, λVGG = 0.5, and λSSIM = 5.0).721

We make the decision to display Table 2 with ML-PEA and uni-722

form dimming results side by side and mark the rankings within723

techniques, rather than between techniques. The reason for this is724

because we want to show optimal parameters for ML-PEA. Com-725

parisons between ML-PEA and uniform dimming can still be made726

by comparing the results within the same row.727

9.2. Ablating Element-Wise Dimming Map Application728

In Section 3, we allude to the fact that our element-wise multiplica-729

tion (MULT) function f is optimal compared to the addition (ADD)730

operation used in prior art. We conducted an ablation on f (ADD731

or MULT) as well as the number of channels (1 or 3) in the output732

dimming map. The results of these experiments are shown in Ta-733

ble 3. A qualitative comparison is shown in Figure 9, where we can734
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Table 2: Here, we display results of ablations on the weights of loss functions used in our experiments. We show results for both ML-PEA
(•) and uniform dimming (•). Cell colors represent first , second , and third -best performance in each α block within power saving
techniques.

α λP λVGG λSSIM ∆P PSNR ↑ (•) SSIM ↑ (•) CVVDP ↑ (•) PSNR ↑ (•) SSIM ↑ (•) CVVDP ↑ (•)
0.55 5.00 0.00 0.50 1.287 18.948 0.966 8.928 19.380 0.932 9.928

50.0 0.00 0.50 2.495 19.398 0.967 9.050 19.551 0.939 9.937
5.00 0.00 5.00 16.506 23.271 0.987 9.374 23.759 0.975 9.979
50.0 0.00 5.00 0.855 18.838 0.964 8.843 19.273 0.931 9.927
5.00 0.05 0.00 2.816 19.495 0.951 9.755 19.765 0.939 9.940
50.0 0.05 0.00 -1.617 18.510 0.926 9.836 18.486 0.924 9.913
5.00 0.05 0.50 4.764 19.963 0.972 9.558 20.208 0.945 9.943
50.0 0.05 0.50 -3.785 17.944 0.955 9.467 18.123 0.912 9.904
5.00 0.05 5.00 14.375 22.681 0.985 9.694 23.008 0.971 9.974
50.0 0.05 5.00 3.634 19.662 0.971 9.405 19.877 0.942 9.940
5.00 0.50 0.00 -3.914 17.763 0.940 9.228 18.464 0.903 9.893
50.0 0.50 0.00 -6.029 17.403 0.921 9.440 17.761 0.898 9.888
5.00 0.50 0.50 6.016 20.276 0.971 9.469 20.968 0.945 9.943
50.0 0.50 0.50 -9.064 16.767 0.936 9.356 17.035 0.882 9.862
5.00 0.50 5.00 15.778 23.192 0.987 9.846 23.442 0.974 9.979
50.0 0.50 5.00 0.092 18.805 0.963 9.551 19.076 0.928 9.924

0.68 5.00 0.00 0.50 2.044 22.829 0.986 9.352 23.170 0.972 9.976
50.0 0.00 0.50 0.886 22.454 0.981 9.098 22.602 0.971 9.975
5.00 0.00 5.00 9.554 25.574 0.992 9.440 25.900 0.985 9.989
50.0 0.00 5.00 -0.038 22.131 0.983 9.167 22.553 0.968 9.970
5.00 0.05 0.00 -5.509 20.695 0.961 9.763 20.904 0.955 9.958
50.0 0.05 0.00 -0.688 22.108 0.970 9.927 22.078 0.968 9.970
5.00 0.05 0.50 1.390 22.729 0.985 9.786 23.011 0.971 9.975
50.0 0.05 0.50 -2.376 21.614 0.980 9.865 21.672 0.963 9.967
5.00 0.05 5.00 9.627 25.736 0.992 9.817 26.008 0.985 9.989
50.0 0.05 5.00 1.080 22.621 0.985 9.736 22.838 0.971 9.974
5.00 0.50 0.00 6.627 24.647 0.985 9.765 25.421 0.979 9.983
50.0 0.50 0.00 -6.007 20.551 0.969 9.707 20.853 0.952 9.956
5.00 0.50 0.50 4.437 23.778 0.987 9.855 24.171 0.977 9.982
50.0 0.50 0.50 -3.243 21.341 0.979 9.758 21.626 0.960 9.963
5.00 0.50 5.00 13.992 27.434 0.993 9.744 27.976 0.990 9.995
50.0 0.50 5.00 -1.613 21.818 0.982 9.812 21.963 0.965 9.968

0.83 5.00 0.00 0.50 -0.046 28.038 0.994 9.443 28.441 0.991 9.994
50.0 0.00 0.50 -0.413 27.961 0.993 9.389 28.014 0.991 9.994
5.00 0.00 5.00 4.733 31.006 0.996 9.568 31.444 0.995 9.997
50.0 0.00 5.00 -1.445 27.367 0.994 9.428 27.618 0.990 9.994
5.00 0.05 0.00 -4.332 26.196 0.990 9.891 26.555 0.987 9.991
50.0 0.05 0.00 -0.876 27.814 0.992 9.982 27.775 0.991 9.994
5.00 0.05 0.50 1.609 29.257 0.996 9.942 29.535 0.993 9.995
50.0 0.05 0.50 -0.759 27.897 0.994 9.979 27.878 0.991 9.994
5.00 0.05 5.00 4.425 31.050 0.997 9.969 31.280 0.995 9.997
50.0 0.05 5.00 -0.374 28.060 0.995 9.819 28.302 0.991 9.994
5.00 0.50 0.00 -2.207 27.237 0.989 9.891 27.949 0.988 9.993
50.0 0.50 0.00 -3.702 26.425 0.990 9.895 26.657 0.988 9.992
5.00 0.50 0.50 1.741 29.279 0.995 9.924 29.775 0.993 9.996
50.0 0.50 0.50 -1.392 27.631 0.994 9.928 27.937 0.990 9.994
5.00 0.50 5.00 7.636 33.662 0.998 9.989 33.748 0.997 9.997
50.0 0.50 5.00 -0.718 27.937 0.995 9.926 28.222 0.991 9.994
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Table 3: Ablation study results on the elementwise dimming map application, f , and the number of channels in the dimming map, C, are
shown here.

α f C ∆P PSNR ↑ (•) SSIM ↑ (•) CVVDP ↑ (•) PSNR ↑ (•) SSIM ↑ (•) CVVDP ↑ (•)
0.55 ADD 3 0.537 18.566 0.955 9.074 19.166 0.930 9.933

MULT 3 3.543 19.599 0.972 9.560 19.930 0.940 9.939
ADD 1 -0.044 17.957 0.947 8.527 19.414 0.920 9.912

MULT 1 5.976 20.244 0.974 9.590 20.586 0.948 9.949
0.68 ADD 3 -1.610 21.523 0.982 9.490 22.221 0.963 9.966

MULT 3 1.199 22.642 0.985 9.835 22.856 0.971 9.975
ADD 1 3.433 22.963 0.985 9.577 24.172 0.973 9.977

MULT 1 -1.086 21.953 0.983 9.722 22.183 0.966 9.969
0.83 ADD 3 -1.360 27.405 0.995 9.890 27.900 0.990 9.994

MULT 3 -0.483 27.976 0.995 9.910 28.168 0.991 9.995
ADD 1 -10.50 23.155 0.985 9.397 24.570 0.975 9.979

MULT 1 0.751 28.745 0.995 9.958 28.988 0.992 9.995

see visible artifacts around edge features in the 3-channel, ADD735

condition which are not visible in the single-channel MULT one.736

We find from this experiment that the MULT operator f performs737

best. For all metrics, the 3-channel dimming map with MULT per-738

formed 2nd-best or better for all target power saving rates. The 1-739

channel dimming map with MULT performed best for target power740

saving rates of 45% and 83%, and performed in the top 3 for a 32%741

savings target.742

Reference MULT, 1-channel ADD, 3-channel

Figure 9: We ablate the number of dimming map channels and
the element-wise function f for applying the dimming map to input
images.

9.3. Comparisons with Le Meur et al. (2023)743

We conducted a comparison between our ML-PEA technique and744

that of [LMDB23], which is the most recent and relevant prior ma-745

chine learning approach to display power optimization. There was746

no open source code, so we attempted to replicate their pipeline as747

best as possible. Their technique optimizes four loss functions: an748

L1, SSIM, and power loss between the input and output images, as749

well as a total variation loss on the dimming map. They also used750

an ADD operation to apply output 1-channel dimming maps to the751

input images.752

We found that the metric scores of [LMDB23] were lower com-753

pared to uniform dimming and ML-PEA for the three target power754

saving rates we studied, as shown in Table 4. In addition, we make755

a plot for this table, shown in Figure 10, to visualize the result. We756

do this because the power saving rates are not matched between757

ML-PEA and [LMDB23]. It is clear that the method of [LMDB23]758

performs worse in terms of the three image quality metrics.759

Table 4: Average scores are tabulated for uniform dimming, ML-
PEA, and [LMDB23].

α Method PSNR (dB) ↑ SSIM ↑ CVVDP (JOD) ↑ Power Saved
0.55 Uniform Dimming 19.08 0.93 9.92 -

ML-PEA 18.81 0.96 9.55 44.91%
Uniform Dimming 17.46 0.89 9.83 -
[LMDB23] 16.02 0.67 8.11 51.76%

0.68 Uniform Dimming 21.96 0.96 9.97 -
ML-PEA 21.82 0.98 9.81 33.61%
Uniform Dimming 21.02 0.95 9.93 -
[LMDB23] 19.39 0.78 8.89 36.98%

0.83 Uniform Dimming 28.22 0.99 9.99 -
ML-PEA 27.94 0.99 9.93 17.72%
Uniform Dimming 26.29 0.99 9.98 -
[LMDB23] 24.79 0.90 9.63 21.26%
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Figure 10: The results from Table 4 are plotted here, for the three methods compared: uniform dimming (•), ML-PEA (•), and [LMDB23]
(•). Quality is on the x-axis and power savings are on the y-axis. Note that here we plot lower quality as x increases, similar to Figure 7.

10. Quality Metric Correlation Analysis760

The typical evaluation strategy for prior machine learning-based761

display power optimization methods has been to compare the aver-762

age of metric scores computed across a test dataset. In Section 4.1,763

we computed quality scores for PSNR, SSIM, and ColorVideoVDP764

metrics on the DIV2k test dataset, and found that, depending on the765

quality metric used, the conclusions made about the model’s perfor-766

mance are very different. In Figure 11, we computed the root mean767

square error (RMSE), Spearman (SROCC), Pearson (PLCC), and768

Kendall (KROCC) correlation coefficients between scores com-769

puted by an additional set of metrics (summarized in Table 5) and770

subjective quality scores from our user study (see Section 5). We771

recommend PSNR used in prior works should not be used as an772

evaluation metric as it has a low correlation score, and may not be773

robust enough for this task.774

11. Supplemental Analyses775

We conducted a number of additional analyses of the performance776

of ML-PEA.777

11.1. Power Savings Dependency on Image Statistics778

In Figure 12, we show that there is a positive correlation between779

power savings and image statistics. Here, we show the mean and780

variance of the image. This effect is likely due to the fact that im-781

ages with many bright regions have greater potential for dimming,782

and vice versa. In the limit, a completely black image has no room783

for power savings, for example.784
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Figure 11: Correlation results for a number of different quality metrics, ranked by performance.

Table 5: Description of quality metrics used in Figure 11.

Metric Description
PSNR Popular metric measuring the ratio between signal and noise.
SSIM [WBSS04] Quality metric that considers luminance, contrast, and structural differences.
MS-SSIM [WSB03] Multi-scaled version of SSIM.
LPIPS (VGG) [ZIE∗18] Compares feature representation of images from a pre-trained VGG network.
LPIPS (AlexNet) Same as LPIPS (VGG) but with an AlexNet backbone.
VMAF [LBN∗18] Perceptual video quality metric that fuses a number of elementary metrics via support vector machines.
HaarPSI [RBKW18] Perceptual quality measure based on the Haar wavelet decomposition.
MDSI [NSHC16] Quality metric based on structural and color similarity.
DISTS [DMWS20] Image quality metric that compares structure and texture similarity using deep features from a pre-trained CNN.
BRISQUE [MMB12] A no-reference quality metric based on scene statistics.
ColorVideoVDP [MHA∗24] Low-level visual model that considers chromatic and achromatic sensitivity.
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Figure 12: We show dependence of power savings on image mean (left) and variance (right).
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12. Additional Results785

In Figure 13, we show additional results comparing uniform dim-786

ming to ML-PEA. The first row shows the input images, and the787

next rows are power-optimized images at the target power saving788

rates shown to the left. Zoom in for details.789

13. User Study790

13.1. Study Instructions791

In Figure 14, we show a screen grab of the user study instructions792

read to the users.793

13.2. Just Objectionable Difference794

The JOD unit is defined in [POM17]. JODs can be mapped to per-795

centage preference, as shown in Figure 15. They are scaled in a way796

such that 1 JOD between some condition A and another B equals a797

percentage selection of A of 75% over B.798
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Figure 13: Additional results are shown here, comparing uniform dimming and ML-PEA.

Figure 14: The study instructions read to users is shown here.
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Figure 15: We map JODs (x-axis) to units of percentage preference
(y-axis). Here, we show the probability of selection of a method A
over another B for 0, 1, and 2 JODs (50%, 75%, and 91%, respec-
tively).
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