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Abstract: Computer-generated holography (CGH) simulates the propagation and interference
of complex light waves, allowing it to reconstruct realistic images captured from a specific
viewpoint by solving the corresponding Maxwell equations. However, in applications such as
virtual and augmented reality, viewers should freely observe holograms from arbitrary viewpoints,
much as how we naturally see the physical world. In this work, we train a neural network to
generate holograms at any view in a scene. Our result is the Neural Holographic Field: the
first artificial-neural-network-based representation for light wave propagation in free space and
transform sparse 2D photos into holograms that are not only 3D but also freely viewable from any
perspective. We demonstrate by visualizing various smartphone-captured scenes from arbitrary
six-degree-of-freedom viewpoints on a prototype holographic display. To this end, we encode
the measured light intensity from photos into a neural network representation of underlying
wavefields. Our method implicitly learns the amplitude and phase surrogates of the underlying
incoherent light waves under coherent light display conditions. During playback, the learned
model predicts the underlying continuous complex wavefront propagating to arbitrary views to
generate holograms.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The ultimate goal of displays is to visually teleport an environment – often from the camera
captures of their physical counterparts – with the identical viewing experience as if we were
in the real world. Holography is a promising technology that can optically record and replay
the wavefront from a 3D environment [1]. Computer-generated holography (CGH) numerically
simulates this wave propagation and recreates the underlying 3D scene when the recorded pattern
is displayed on a spatial light modulator (SLM) illuminated with coherent light. CGH has been
shown as a promising technology for virtual/augmented reality (VR/AR) [2–4] and biological
discoveries [5]. Although accurately computing the interference patterns is challenging, recent
advances in deep learning-based methods [6,7] have demonstrated unprecedented success in
computing holograms with low power, high quality, and in real-time [8–12], making CGH
promising for telepresence.

Computer-generated hologram phases are typically computed from individual frames of a
given 2D image [13,14], 4D light fields [15,16], depth maps [8,17,18], or multi-plane focal stacks
[19,20]. This means that existing CGH methods can only reconstruct holograms for limited views
that have already been captured, but fail in accounting for arbitrary and novel viewing directions.
Consequently, 3D CGHs so far are largely confined to computer-simulated virtual imagery, such
as hand-crafted polygonal meshes [21–23], and not yet facilitating the free-viewing telepresence
experience of physical environments.
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Three-dimensional imaging techniques have evolved over the years to acquire geometric
light propagation with photorealism [24], even with non-line-of-sight [25–27] and distant [28]
objects. However, existing methods only solve Maxwell’s equations under several approximations
for tractable computational complexity, and therefore cannot accurately represent complex
phenomena seen from arbitrary views, such as diffraction around partial occlusions [8,15].
This forms a significant impediment to achieving true 3D telepresence: how to represent wave
propagation in all directions.

In this work, we bridge the gap between image-based 3D CGH generation and sparse real-
world camera photos to achieve free-view, 6 degree of freedom (DOF), and continuous visual
reproduction of 3D holograms. To this end, we devise a physics-based implicit hologram
representation with a deep neural network, dubbed neural holographic fields (NHFs). We first
generate a dataset of per-view light fields using a neural view synthesis technique, which are
then transformed to holograms using a stereogram approach. Then, we train a neural network to
predict the stereograms from single RGB views, for real-time inference. The NHFs impose the
underlying omnidirectional wave propagation in a physical scene with sparse amplitude-only
photos. This way, it presents an implicit proxy of the real-world scene and captures complex
photorealistic effects. Moreover, our framework builds the real-world scene representation
from just a handful of images captured using common consumer smartphones. This not only
eliminates the need for creating photorealistic computer models with trillions of polygons and
using sophisticated capture equipment, but also for the first time introduces a practical and
comprehensive pipeline for camera-display dual telepresence using CGH. See Visualization 1 for
an animation example.

2. Generating holograms for novel views

As illustrated in Fig. 1(A), in our experiments, we freely captured unique images (4K resolution,
later scaled down to 1280x720 for network training) that sufficiently cover all regions of a scene.

This acquisition step only takes several minutes, and we demonstrate that as few as 50 captured
images can adequately represent a physical scene. However, more structured or densely-sampled
captures may improve the results, as shown in the study in Fig. 3 (D) which compares image
quality against the number of input images. The camera captures are then processed using a
structure from motion (SfM) model [29,30] to estimate camera parameters.

We model and represent a target scene as a set of anisotropic 3D Gaussian primitives with
learned position, covariance, opacity, and view-dependent color [31]. Given an input camera
view, these Gaussians are projected to 2D and rendered into an RGB image I via alpha blending.
The color of a single pixel in an image located at coordinates θ = (θx, θy) with camera location t
and viewing direction R is computed through alpha blending as

I(θx,θy) = f (θ, R, t) =
∑︂

i
ciαig(θ, µi, Σi)

i−1∏︂
j=1

(1 − αjg(θ, µi, Σi))

g(θ, µi, Σi) = e−
1
2 (θ−µi)

⊺Σ−1
i (θ−µi).

(1)

An image-based loss (L1 norm) between the synthesized and input images is computed, and
the gradients are used for a backward pass that optimizes the spherical harmonics parameters,
opacity α, positions µ, and 3D covariance Σ of the Gaussians. The learned model represents
a holographic radiance field, a function that approximates the radiance emitted from a spatial
location t and viewing direction R [32].

2.1. Per-view light field synthesis

The learned Gaussian-based omnidirectional radiance field encodes light wave propagation in
the 3D environment. By querying the learned radiance field for any given camera view, we
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Fig. 1. Learning and reconstructing free-view neural holographic fields. (A) Camera
captures are used to optimize a scene representation model. (B) Light field elemental views
are rendered by iteratively evaluating the radiance field at uniformly spaced camera positions.
Epipolar slices show that the scene representation model can synthesize new views with high
image quality. (C) The light field is converted to a complex wavefront by computing the
inverse of the short-time Fourier transform (iSTFT). (D) The model weights of a CNN are
optimized by backpropagating the errors of a focal stack loss. The ASM is used to simulate
wavefront propagation at different distances from a reference plane. (E) Insets of model
predictions for four test views are shown, with near and far focus.

synthesize a local light field as an intermediate representation for 3D holograms. For a specific
camera orientation and position in 3D space, we obtain images of the scene by evaluating the
rendering function f for all pixel coordinates. This allows sampling at arbitrary precision, and
enables accurate reconstruction of structured light fields by translating a virtual camera,

L
(︁
j, k, θx, θy

)︁
= f

(︁ (︁
θx, θy

)︁
, R, t(j,k)

)︁
,

t(j,k) = t + R
⎛⎜⎜⎜⎜⎝
jγx

kγy

0

⎞⎟⎟⎟⎟⎠
,

(2)

where j, k are x and y indices of light field elemental views, and γx, γy are constants which control
the distance between elemental images in the x and y directions, respectively. The vector t(j,k)
denotes the translation along the camera’s local z plane. Light field elemental views can be
sampled by uniformly evaluating Eq. (2) at evenly spaced intervals. This formulation defines the
light field central view at (j, k) = (0, 0), i.e., when camera translation is unchanged. Epipolar
images from the synthesized light fields are extracted by sampling along horizontal and vertical
lines, and are displayed in Fig. 1. These images show that the scene representation can interpolate
between training images, even at small translation distances.
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2.2. Wavefront inversion

At the core of our NHF representation is a method that computes complex holograms through the
inversion of an input light field, similar to prior literature [33]. We first describe how a complex
wavefront, U = aeiφ where a is amplitude and ϕ phase, is related to a light field. Light field
angular views can be recovered by computing local samples of a propagated wavefront through a
2D Short-Time Fourier Transform (STFT),

S(x,y, fx, fy)

= STFT(θx,θy)

{︁
U(x, y)

}︁∬ ∞

−∞

U(x′, y′)w(x′ − x, y′ − y)e−2πi(fxx′+fyy′)dx′dy′,
(3)

in which a window function w (Hann window in our experiments) constrains the wavefront to
a limited set of frequencies. We apply the STFT here because it computes a local frequency
spectrum, where the application of a window function results in local light field angular views.
Here, the variables x, y are spatial position, θx, θy are angles, and fx, fy are spatial frequencies in
the x and y directions which are related to the sine of light field viewing angles as

fx =
sin(θx)
λ

. (4)

Here, λ is the wavelength of a monochromatic illumination source. In practice, three coherent
monochromatic sources illuminate the SLM sequentially to display full-color images. The
corresponding light field, L, can be computed as the square magnitude of the local STFT
spectrum, as

L(x, y, θx, θy) =
|︁|︁S(x, y, fx, fy)

|︁|︁2, (5)

where the operator | · |2 is the element-wise squared absolute, or the real-valued intensity of the
complex field. In order to recover the underlying complex wavefield from a source light field, we
invert the STFT as follows,

U(x, y)

=

∬ ∞

−∞

w(x − x′, y − y′)
∬ ∞

−∞

L(x′, y′, θx, θy)e
(︁
2π(fxx′+fyy′)+Φ(x,y,fx,fy)

)︁
idfxdfydx′dy′

= STFT−1{︁√︂L(x, y, θx, θy)eΦ(x,y,fx,fy)i
}︁
.

(6)

Notably, light field images typically do not contain phase information Φ, and heuristics are
used to solve the inversion problem [21,34]. This bidirectional transform between light field and
hologram can be generalized by the Wigner distribution function (WDF) [35,36], but is typically
solved using stereogram approaches [34,37] due to the computational intractability of inverting
the WDF.

An illustration of our data processing and hologram generation pipeline is shown in Fig. 1. In
summary, the data generation pipeline creates paired training data consisting of RGB images
corresponding to light field central views, and complex holograms generated from the light field
via wavefront inversion. We pre-compute the data generation step and use it as a training dataset
for an efficient deep learning-based optimization pipeline, which we describe next.

3. Learning neural holographic fields

3.1. NHF neural network

Generating the holograms for each view is impractical, especially when rendering light fields
with high angular or spatial resolution. On average, this process can take more than 3 minutes
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to generate a monocolor hologram for a single view, and can consume significant memory
for wavefront inversion. We train a neural network which learns complex holograms from
light field central views to bypass this compute-heavy phase hologram generation step. Our
neural network-based hologram generation takes a single RGB image (rendered view from the
view synthesis algorithm at the captured camera positions) , and outputs the corresponding
six-dimensional hologram amplitude and phase (ie three channels each for RGB color). This is
different from traditional 3D hologram generation, which require 3D supervision (e.g. depth
maps [38,39], focal stacks [40,41]) to produce accurate focusing effects. The NHF model is a
fully convolutional neural network (CNN) with an encoder-decoder structure, and is trained on
the simulated data. Skip connections are used to improve the ability of later upsampling layers
by reintroducing features lost during downsampling in earlier layers of the network. A simplified
schematic of our neural network model as well as its inputs and outputs is shown in Fig. 1.

3.2. Image formation

Images generated by a holographic display are simulated by computing the propagation of a
source wavefront, Us, created by a coherent beam by using the angular spectrum method (ASM)
[42]. The modulation of a wavefront by a spatial light modulator (SLM) to a target plane at
distance z from the SLM plane can be computed as follows,

P(Us;z) = F −1
(︃
F
{︁
Us(u, v;0)

}︁
◦ H(fx, fy;z)

)︃
H(fx, fy;z) =

⎧⎪⎪⎨⎪⎪⎩ei2πz
√︂

1
λ2 −f 2

x −f 2
y , if

√︂
f 2
x + f 2

y <
1
λ

0, otherwise
,

(7)

where z is the propagation distance, H is the ASM propagation kernel, and F (·), F −1(·) are
the 2D Fourier transform and its inverse, which decomposes the wavefront into its plane wave
components. Notably, the ASM propagation module is a differentiable operation, and physical
wavefront propagation can be simulated to reconstruct holographic images in a learning-based
pipeline.

3.3. Training procedure

We use stochastic gradient descent to train the parameters, Θ, of our CNN to produce holograms
by minimizing a task-specific loss function,

Θ
∗ = arg minΘ

∑︂
z∈[znear,zfar]

L

(︃
P

(︂
MΘ

{︁
L(0, 0)

}︁
; z
)︂
,P

(︂
U; z

)︂)︃
(8)

where MΘ is our neural network model with trainable parametersΘ. The final trained parameters
Θ∗ of the network are used to output three-dimensional hologram amplitude and phase a, ϕ
(a six-dimensional image) which minimizes this loss function to approximate a ground truth
wavefront. Our loss function samples the volume within near and far planes [znear, zfar] at multiple
depths, z, by propagating the wave field using the ASM and consists of both a photometric and
perceptual loss,

L

(︃
P

(︂
MΘ

{︁
L(0, 0)

}︁
; z
)︂
,P

(︂
U; z

)︂)︃
= λL2

∑︂(︂|︁|︁P(MΘ

{︁
L(0, 0)

}︁
; z)

|︁|︁2 − |︁|︁P(U; z)
|︁|︁2)︂2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Photometric Operator

+ λvggLvgg

(︂|︁|︁P(MΘ

{︁
L(0, 0)

}︁
; z)

|︁|︁2,
|︁|︁P(U; z)

|︁|︁2)︂⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Perceptual Loss

(9)
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Fig. 2. Simulated results. (A) NHF-predicted results with all-in-focus DSLR test image as
input, as well as focal stacks with zoomed insets. (B) Another example scene, including
insets with near and far focus. (C) New scene views predicted by NHF with near focus. In
all examples, dashed boxes represent in-focus regions. Ground truth images were captured
using a different camera than used for training of the NHF model, so color correction was
applied to displayed images for better comparison.

The terms λvgg, λl2 are weights on each loss term, which are experimentally tuned. Please
refer to the Supplement 1 for more discussion and an ablation study on these terms. Here, we
assume L(0, 0) is the central light field elemental image, taken at camera parameters (R, t). The
first term in the loss is the photometric operator, or the mean square error loss, which intends to
minimize the distance of individual pixel intensities between predicted and ground truth focal
stack images. The second term is a VGG loss, which is a perceptually-inspired image distance
metric [43]. VGG loss computes the difference between predicted and target images projected
to a pre-trained CNN backbone’s feature space. This loss is used to optimize for higher-order
perceptual artifacts, rather than pixel-wise error, which is the purpose of the photometric error
term. After computing the loss between simulated holographic reconstructions predicted by the
CNN and the target images, the errors are backpropagated to the neural network weights which
are updated using the computed gradients. See the Supplement 1 for pseudocode of our pipeline.

3.4. Performance evaluation

The NHF CNN can converge within approximately 40 epochs, and only requires a small dataset
(as generated by the procedure in the previous section) to generalize to new views. Due to this, the
depth and width of our network need not be large to generalize to unseen views, as long as images

https://doi.org/10.6084/m9.figshare.28776746
https://doi.org/10.6084/m9.figshare.28776746
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Fig. 3. Performance evaluation. (A) PSNR (dB) as a function of different neural network
parameters. In this figure, the number of convolutional filters (or kernels) and the depth of the
network are compared. Black scatter points are parameters sampled for these experiments.
(B) The run-time for our model is also measured. (C) Additional PSNR (red, left y-axis)
and SSIM (blue, right y-axis) numbers are reported for different model sizes, by varying the
number of network layers. (D) Comparison of number of input views (between 2 and 269
training images) and model performance. Error bars represent one standard deviation.

are in the domain of the original scene images. Figure 2 shows simulated results generated by
our NHF pipeline. We evaluate the performance of our neural network by comparing qualitative
results to ground truth focal stack images as captured by a NIKON D3500 DSLR. The simulated
images not only exhibit high image quality, but also accurate refocusing cues.

We conducted an analysis of the running time of our network as a function of several parameters,
such as the number of model layers and filtering dimensions. When implemented on a GPU,
the NHF CNN can achieve a forward evaluation framerate of >70Hz for images of resolution
1024×576, compared to the approximately 3.5 minute run time of the wavefront inversion pipeline.
A quantitative evaluation of the image quality (PSNR, in units of dB) of images synthesized
by our model across different parameters are provided in Fig. 3 (A) and (B). Additionally, we
test with different model sizes, as well as with different numbers of training images (between
2-269 images), as shown in Fig. 3 (C) and (D). We find that increasing the model size (number
of parameters) beyond a certain point provides negligible performance increase, and may even
degrade performance. We also found that performance saturates at around 100 input training
views. See the Supplement 1 for additional training details, pseudocode, more results, etc, and
Visualization 1 for an animation of our model’s view interpolation ability.

4. Display prototype

Our holographic display prototype setup uses a Fisba Ready fiber-coupled laser and phase only
LCoS SLM (HOLOEYE PLUTO-2.1-VIS-014) with resolution of 1920 × 1080 and a pixel
pitch of 8 µm. The laser provides wavelengths of 450 nm, 520 nm and 660 nm with per-diode

https://doi.org/10.6084/m9.figshare.28776746
https://doi.org/10.6084/m9.figshare.28410158
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Fig. 4. Experimental results. Left column are simulated results predicted by NHF, and
the right are experimental results captured from our holographic display. Dashed boxes
represent regions which are in focus.

power control. The fiber-coupled laser is mounted using a Thorlabs FC/APC fiber adapter
plate with Kinematic Mount. In our implementation, images are captured using a FLIR color
camera for each wavelength and then concatenated channel-wise during post-processing. Other
components include one non-polarizing cube beamsplitter with 50 : 50 energy split ratio (Thorlabs
BS031), linear polarizers (Thorlabs LPNIRB100), one-axis motorized translation state (Thorlabs
PT1/M-Z9) and relay imaging lenses, as shown in Supplement 1 Figure 8. The holograms
predicted by NHF are sent to the display after double phase encoding [17,44], which allows
us to display the predicted 6-channel complex holograms on our phase-only SLM. Figure 4
shows experimentally captured holographic images, compared to ground truth and simulated
results. Supplement 1 Figure 9 shows monochromatic results. Please refer to the Supplement 1
for additional experimental results.

https://doi.org/10.6084/m9.figshare.28776746
https://doi.org/10.6084/m9.figshare.28776746
https://doi.org/10.6084/m9.figshare.28776746
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5. Conclusion

Existing CGH can only be generated from pre-captured imagery, such as RGB-D maps, to
synthesize accurate 3D holograms. This view-dependent generation framework limits its
potential in free-viewing and interactive scenarios, such as VR/AR. To overcome these barriers,
we introduce the first free-viewing neural encoding for CGH–the neural holographic field
(NHF). Using just a few freely captured photos from a smartphone as heuristic knowledge of
a physical environment, NHF employs a neural network to generate corresponding 3D and
colored holograms for any unseen camera view in real-time. We envision NHF paving the
way for practical applications of CGH in VR/AR with the aid of AI. In the future, we plan
to explore solutions with generative models [45] to create realistic, free-viewing holograms
without relying on camera captures. Furthermore, NHF has shown promising results for inferring
3D holograms at arbitrary novel viewpoints in real-time, making it well-suited for holographic
displays with small baseline parallax, such as wearable AR/VR systems. Meanwhile, an exciting
future direction is to extend this approach to large-scale multiview holographic displays.
Funding. National Science Foundation (2225861, 2232817, 2107454).
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