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Abstract

Characterization of a high dynamic range (HDR) display’s
performance can be largely defined by its contrast and peak lu-
minance. Prior work has studied this question for virtual real-
ity (VR) using a haploscopic HDR setup, but it is not obvious
if those results are transferrable to a more traditional viewing
setting, such as direct view. In this work, we conducted a study
to measure user preference for different contrast and peak lu-
minance parameters in this scenario, and develop a perceptual
Jjust-objectionable-difference (JOD) scale to quantify preference
scores. This is accomplished by studying contrast and peak lumi-
nance conditions across several orders of magnitude, shown on a
professional HDR display with peak luminance of 1,000 nits and
1,000,000:1 contrast. The data is used to develop a computational
model that can drive display design and future standardization of
the definition of HDR, in terms of human preference.

Introduction

The contrast and peak luminance of a display are the most
important characteristics defining the quality of a high dynamic
range (HDR) display. Industry standards for commercial displays
define at which point a display can be considered HDR for these
parameters and others, like color gamut and bit depth. However,
standards such as DisplayHDR do not provide a perceptual ra-
tionale for how tiers were selected in their standard. We show
that DisplayHDR is not spaced in equal perceptual units (see Fig-
ure 1), as defined by our model. Prior work has tried to answer
this question, but have not studied the full range of parameters
relevant for HDR displays.

Much of the prior work on characterizing preferences in
HDR displays has focused on determining black level or high-
light preferences, but not the two in combination. We compare
different studies in Table 1. Furthermore, prior works have stud-
ied conditions specific to a certain application, such as virtual and
augmented reality (VR/AR) or cinema. It is unclear whether the
results of studies targeting these specific application scenarios can
be translated to more traditional direct view conditions.

In our work, we develop a unified perceptual scale for quanti-
fying user preference across different contrast and peak luminance
parameters in a more traditional, direct view HDR scenario. We
do this by following the study methodology of Chen et al. [1],
with some modifications for direct-view displays. This scale al-
lows us to make design decisions for display that can inform de-
cisions on display power and more.
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Figure 1. In this plot, we show that the existing standard for HDR, Dis-
playHDR, is not spaced in equal perceptual units (JODs) as defined by our
model. Red X marks are equally spaced as evaluated by this model (param-
eter values can be seen in Table 2).

Background & Related Work

The term HDR can encompass the full pipeline of capture,
processing, and display. HDR capture can include camera tech-
nologies with specialized sensors, and processing pipelines may
include technologies that convert camera captures to HDR con-
tent. In this work, we focus on HDR display technology — specifi-
cally on how the performance of an HDR display can impact user
preferences.

Kunkel and Reinhard [8] argued that the contrast capabil-
ities of a high-end display could approximate the simultaneous
dynamic range, i.e. the brightest and darkest features detectable
under a given adaptation state, of the human visual system, which
can span more than 4.7 log nits of luminance. Work on light-
ness perception [9] found that the human visual system is capable
of distinguishing lightness values over a range of greater than 3
log nits of luminance. While these works studied the perceptual
thresholds of absolute luminance perception, ours aims to study a
more practical question of user preference across a range of rele-
vant HDR contents.

The work of Chen et al. [1] forms the basis of this paper, and

Comparison of our work to prior studies.

Study Peak Luminance  Contrast  Setting

Wanat et al. [2] X 4 Direct View
Mantiuk et al. [3] X 4 Direct View

Chen et al. [4] 4 X Augmented Reality
Hammou et al. [5] v X Direct View
Matsuda et al. [6] 4 Virtual Reality
Daly et al. [7] 4 Cinema

Chen et al. [1] v v Virtual Reality
Ours v v Direct View
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Figure 2. User study stimuli (representative video frames) are shown here,
grouped by content category and tone-mapped for display. The luminance
distribution of each scene is shown to right, in logarithmic units. Note that
the black background in Productivity and Faces scenes was excluded when
plotting luminance distribution.

is the only study that has defined a perceptual scale for HDR for a
wide range of contrast and peak luminance parameters. However,
their study focused on HDR VR, where they designed a haplo-
scope testbed. Much of the prior work has studied one of either
peak luminance or contrast, but not both. Matsuda et al. [6] used
a prototype HDR VR headset [10] to study preferred peak lumi-
nance for different passthrough VR scenes. The work of Daly
et al. [7] studied preferences for different exposure values in dif-
fuse images, and highlight preference in images with specular re-
gions. Their work focused on cinema, and even simulated exit
sign lighting. Other works [2, 3] aimed to determine black level
requirements of an HDR display, while some studied the effect of
peak luminance on realism [4] or of the interaction of peak lumi-
nance and viewing distance [5]. Our work is the first to define a
perceptual scale for HDR across several orders of magnitude for
both peak luminance and contrast in a direct view HDR setting.

Experiment Methods

The goal of our user study is to determine preference scores
across a range of peak luminance and contrast parameters in a
direct-view HDR display. We base our study design on Chen et al.
[1], but adapted it for our direct-view scenario. The main differ-
ences between the two studies is in the hardware apparatus and in
the stimuli, both described in the next paragraphs.

Hardware Apparatus An EIZO CG3146 professional HDR
monitor with a peak luminance of 1,000 nits and contrast ratio
of 1,000,000:1 was used as our testbed for subjective studies. The
display was calibrated with a spectroradiometer to a REC.2020
color gamut with PQ EOTFE. Participants were seated 114.3 cm
(0.88 diopters) away from the display, and the room lights were
turned off.

Participants In total, 12 participants (6 men, 6 women) took
part in the study. Participants had normal or corrected-to-normal
vision, and completed the Ishihara test to assess color vision defi-
ciency before beginning the experiment. The study was approved
by an Institutional Review Board (IRB).

Stimuli Users were shown two scenes from each of four rel-
evant content categories: faces, productivity, entertainment, and
user-generated content (UGC). See Figure 2 for example frames
taken from the stimuli videos, tone-mapped for display here. Pro-
ductivity and faces content as well as the "Werewolf” scene are
from Chen et al. [1], ”Showgirl” from Froehlich et al. [11], and
UGC scenes from Song et al. [12]. The luminance distributions of
the videos is also displayed. Videos were encoded with HDR10
metadata (4K, 60fps, 10-bit, BT. 2100 primaries, PQ EOTF), and
manually mastered to the range of the HDR display.

Five contrast and five peak luminance conditions were sim-
ulated using tone mapping:

¢ Peak luminances: 63, 125, 250, and 1,000 nits
e Contrasts: 64:1, 320:1, 1,600:1, 8,000:1, and 40,000:1

The reference condition was anchored at 1,000 nits peak lumi-
nance and 1,000,000:1 contrast, which is the maximum capability

of our HDR display.
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ences in peak luminance and
black level. The peak lumi-
nance is modified by computing a smooth roll-off at a starting
luminance value, defined by a spline. The goal of this tone curve
is to preserve mid-tones, while modulating black level and high-
lights. A similar tone curve was described in an International
Telecommunication Union (ITU) standard recommendation for
HDR TV [13].

Input Luminance [nits]

Procedure The method of pairwise comparison was used in this
study, with a two-interval forced-choice design (2-IFC). To start
each trial, participants first viewed the reference (1,000 nit peak,
1,000,000:1 contrast) video. Participants were then able to switch
between the reference and two test videos using a standard key-
board. During stimuli switching, a grey blank screen is inserted to
not allow direct comparisons while swapping stimuli. The study
task was to select the test video that appears closer to the refer-
ence, in terms of both contrast and brightness. In order to reduce
the number of total comparisons, we used an adaptive sampling
algorithm to schedule the optimal trials to show users. The ASAP
[14] algorithm is used for this purpose; the algorithm samples tri-
als by maximizing expected information gain. In total, the data
amounted to 2,400 total trials completed.
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Figure 3. Here, we show subjective study results (scatter points) and model
fits (solid lines). The x-axis represents variable logarithmic contrast (left)
or peak luminance (right), and the y-axis perceptual impact in JODs. The
reference (red star) is pegged to 0 JODs. Single lines represent constant
peak luminance (left) or contrast (right) conditions.

Results The pairwise comparison responses were scaled to per-
ceptual quality JOD scores assuming Thurstone’s Case V assump-
tions using the pwemp technique [15]. We show the scaled results
in Figure 3 as scatter points, at constant peak luminance and con-
trast at left and right, respectively. Error bars, representing 95%
confidence intervals, were simulated using 500 bootstrap samples
via the same pwcmp algorithm. Inter-quartile normalized scores
were computed, also using pwcemp, to detect outliers of which
none were found.

We note that quality generally increases with contrast and
peak luminance, but dips when contrast is extremely low (e.g.
64:1) and peak luminance is high (1,000 nits). The same effect
was found to be true in Chen et al. [1] and Seetzen et al. [16].

An N-way analysis of variance (ANOVA) was conducted to
determine the main effects of all study variables on JOD scores.
The main effect of contrast and peak luminance on JODs was
found to be significant (p < 0.01). The main effect of scene on
JODs was not found to be significant, but the interaction effect
of contrast and peak luminance with scene was (p < 0.01). The
interaction effect of contrast and peak luminance was also signif-
icant (p = 0.001).

The closest related work to ours is the study from Chen et al.
[1], where a perceptual scale was defined for HDR VR. We com-
pared our results with those from Chen et al. [1] and computed
correlations between the two datasets. We visualize this in Fig-
ure 4, where the x-axis are JODs from Chen et al. [1] and the y-
axis JODs from our direct-view study. The Spearman rank order
correlation was found to be p = 0.97 (p = 1.41 x 10~ 19), the Pear-
son correlation was p = 0.98 (p = 2.38 x 10~'7), and the RMSE
was 0.488. From this, we can conclude that there is high correla-
tion between our results and the haploscopic ones from Chen et al.
[1], suggesting that the two viewing conditions result in similar
preference scores. We note, however, that direct view JOD scores
are consistently higher (above identity line) for low-contrast con-
ditions and lower for high-contrast conditions.

Model

We optimized the parameters of the polynomial model from
Chen et al. [1] to our subjective study data. The model has the
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Figure 4.
scopic (HDR VR) results from Chen et al. [1] (x-axis). Point color defines
log-contrast, and point size defines peak luminance. The dashed line repre-
sents the identity line.

We compare our direct-view results (y-axis) with the haplo-

following form:

A (Linin; Lnax) = (kl _kz\/@> : (IOgIO(Lmax)k3> —ky,
(1

where Ly,i, and L,k are black level and peak luminance, respec-
tively, and k; are parameters to be optimized. The model outputs
JODs given these inputs. Note that we define contrast as C = %,
so contrasts can be converted to black level Ly;,. The optimi;gd
parameter values are

k1 =3423.04, ko = 0.00014, k3 = 3426.64, ks = 0.68530. (2)

The fitted model has RMSE of 0.134 and MAE of 0.110, in JOD
units. Model fits plotted over study data are shown in Figure 3
as solid lines, and across the full range of peak luminance and
contrast in Figure 5.

Applications
We apply the computational model to relevant applications,
including display design and HDR standardization.

Display Design

The design of a display — the hardware components that af-
fect its performance — influences factors like power consumption
[17] and manufacturing/fabrication cost. In an LC display, power
can be modeled as a linear function of peak luminance [17, 18].
Interpreting display power savings given the plot in Figure 5, the
peak luminance axis (y-axis) can be taken to represent relative
power savings. Iso-JOD lines then represent a tradeoff in display
power (peak luminance) and contrast. More complex dimming
schemes, e.g. local dimming, may boost contrast, thereby allow-
ing lower peak luminance (and power consumption) at the same
perceptual impact.
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Figure 5. We show a heatmap representing model evaluations for combinations of contrast (x-axis) and peak luminance (y-axis), both logarithmic. Colors
represent perceptual impact in JODs, with the baseline set to a typical display with 100 nits peak luminance and 1,000:1 contrast. Star points are parameters of
DisplayHDR, and the dashed lines represent iso-JOD lines. Red dashed lines (and X's) are equally spaced between the lowest and highest tiers in DisplayHDR.

HDR tier list.
DisplayHDR Ours
Peak Luminance  Contrast JOD ‘ Peak Luminance  Contrast JOD
Tier 1 400 1,300 1.08 400 1,300 1.08
Tier 2 500 7,000 1.46 500 3,750 1.39
Tier 3 600 8,000 1.59 650 12,000 1.67
Tier 4 1,000 30,000  2.01 920 24,000 1.95
Tier 5 1,400 50,000  2.25 1,400 50,000  2.25
HDR Standard

Given our model, we can define a new tier list for HDR dis-
plays that is perceptually-informed. In the DisplayHDR standard,
tiers spacing is not perceptually uniform when computed using
our model, as seen in Figure 1. Instead, we can use our model to
interpolate between the lowest and highest tiers of DisplayHDR
to sample JOD scores uniformly (shown with red crosses in Fig-
ure 5 and Figure 1). Peak luminance, contrast, and JOD values for
DisplayHDR and our adjusted parameters are shown in Table 2.

Conclusion

In this work, we defined a perceptual scale across a wide
range of peak luminance and contrast parameters, spanning mul-
tiple magnitudes, for a direct-view HDR display. We simulated
these different displays using tone mapping, and conducted a
study assessing preference for relevant content categories. Data
was scaled to perceptual units, and compared to prior art. The
data was fit to a model and applications in display design and
perceptually-uniform display categories were explored.
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