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Figure 1: Our pipeline generates images which consume less power than the original when shown on a display, while minimizing perceptual
impact. Here, we show an example of an image generated with our technique (¢) compared to the reference (e) and its uniformly dimmed
version (e). The corresponding dimming maps are shown in the insets, with the multiplicative scaling factor presented in the color bar on
the right. Note that both the uniformly dimmed image and the image generated with our technique in this figure consume the same amount of
display power: 52.1% of the reference.

Abstract

Image processing techniques can be used to modulate the pixel intensities of an image to reduce the power consumption of
the display device. A simple example of this consists of uniformly dimming the entire image. Such algorithms should strive to
minimize the impact on image quality while maximizing power savings. Techniques based on heuristics or human perception
have been proposed, both for traditional flat panel displays and modern display modalities such as virtual and augmented reality
(VR/AR). In this paper, we focus on developing and evaluating display power-saving techniques that use machine learning
(ML) in VR displays. We developed a U-Net-based technique paired with perceptual and power optimization loss functions
that generates spatially varying dimming maps. These dimming maps are used to modulate input images, per-pixel, to generate
a power-efficient image. Our pipeline was validated via quantitative analysis using image quality metrics and through a
subjective study. Our subjective validation provides results scaled in perceptual just-objectionable-difference (JOD) units. This
data, when rescaled, allows for comparisons of our technique with recent studies on VR display power optimization. Our results
show that participants prefer our technique over a uniform dimming baseline for high target power saving conditions. This
model and study serve as a template and baseline for future applications of deep learning to display power optimization. Model
training code and data can be found at kenchenl0.github.io/projects/mlpea/index.html.

CCS Concepts
» Computing methodologies — Virtual reality; Mixed / augmented reality; Perception; Machine learning;

1. Introduction entire power budget [TOMB13; ATS*11]. This issue is magnified
for novel display modalities like VR/AR, which typically consist
of displays within a compact head-mounted form factor, and are
untethered from a constant power supply. And, while a wide body

The power requirements of display devices are ever-increasing due
to higher resolutions, greater peak luminances, and more. Displays
are very power-hungry, and can account for up to 40% of a device’s
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of work in the machine learning community has studied low-power
and efficient neural networks [HTH22; CGZH20; WCB*18], lit-
tle work on how machine learning can be applied to optimize the
power efficiency of media devices has been explored.

Power saving image processing techniques are often lossy op-
erations and introduce a tradeoff in image quality, for example by
reducing a display’s peak luminance. Imaging algorithms that op-
timize power while minimizing perceptual impact are critical to
maintaining acceptable power usage with high visual quality in
such devices, while also reducing the carbon footprint of display
devices. Many proposals have been made for such methods. We de-
scribe a number of these in Section 2, and they range from simple
dimming-based methods to complex gaze-contingent color modu-
lation algorithms [DCT*22; CDU*23].

In this work, we focus on employing machine learning (ML)
techniques to achieve this goal, specifically for a VR scenario. In
Section 2, we discuss existing works that use ML for power sav-
ings, but find that they are insufficiently described to replicate, and
limited in terms of validation. To address this lack, we employ the
framework introduced in the recent PEA-PODs work [CWM*24],
where a study was conducted to measure perceptual impact of
a number of VR display power optimization techniques on the
same unified perceptual scale. We conduct a study comparing our
machine learning-based perceptual power saving algorithm (ML-
PEA) against a uniform dimming baseline, with results scaled in
a perceptual just-objectionable-difference (JOD) scale. Finally, we
compare ML-PEA’s performance in the context of the previously
measured power saving techniques from PEA-PODs by re-scaling
JOD scores, demonstrating competitive performance that beats all
other methods for key applications. In summary, our main contri-
butions include

e an ML technique that produces images that reduce VR display
power consumption, while maintaining visual quality,

e a user study to assess it, and

e analysis of results in context of state-of-the-art power saving al-
gorithms, showing performance improvements for key use cases.

2. Background & Related Work

In order to develop a display power optimization algorithm, it is
important to understand how power consumption varies depend-
ing on the target display. The power consumed by a display device
depends on both the pixel intensity distribution of the content be-
ing displayed and the device’s underlying display architecture. This
means that the power profile of the same image shown on one dis-
play architecture can be very different from another. Display power
models are used to estimate the power consumption of an image.
We briefly summarize common display types and their respective
power models here.

Two classes of flat panel display are common in today’s com-
mercial landscape; LC and organic light-emitting diode (OLED)
displays. LC displays consist of an array of LEDs, or backlight unit
(BLU), below a color filter array and diffusers. In an OLED display,
each pixel typically consists of three LEDs, one for each color pri-
mary. The power consumed by any display is typically dominated
by the devices that emit light. As such, the power consumed by

an LED display can be modeled as a function of the sum of pixel
intensities, weighted differently for each primary,

P(I) =) wrer +wgeg +waes, M
cel
where c is a single pixel with red, green, and blue component LEDs.
The weights, w(.), can be modeled or determined through experi-
mental measurements of display power [DZ12; DCT*22]. In an LC
display, power is determined by LEDs in the BLU, which is typi-
cally of much lower resolution than the image itself,

P(I):% Y 4 )
deB(T)

where B(-) is the BLU array which is a function of the displayed
image and d is the intensity of individual LEDs in the BLU. N is
the number of LEDs in the BLU (notably, all BLU LEDs in a global
dimming display have the same intensity). A detail that is omitted
here is the way in which the BLU intensities are determined, given
the input image. This is typically simple to determine for an LC
display with global dimming, whereby all BLU LED intensities are
set to the maximum pixel value in the image,

d = max(cg,cg,cglc € T). 3)

In a local dimming scheme, some image processing is usually em-
ployed, with consideration of the display’s point spread function
and BLU LED arrangement [THW*(07]. Power consumption pre-
dictions for a local dimming display require knowledge of the dis-
play device’s unique processing algorithm. Of note, however, is that
power consumption in LC displays depends entirely on the inten-
sity of BLU LEDs, whereas the power consumption in an LED-
based display depends on the sum of RGB pixel intensities. As
such, display power optimization methods which modulate color
typically only work for LED-based displays. In this work, we fo-
cus specifically on optimizing power for OLED displays, using the
model in Equation (1). We note that in prior works, a constant
offset value, §, is added to the expected display power to account
for the circuit [CWM#*24]. Because this value does not vary with
image content, we discard it here. Furthermore, our work only con-
siders power consumed by the display; we do not consider power
consumed by components such as the CPU.

Heuristic Techniques The simplest of techniques for display
power reduction is perhaps uniform dimming, where all pixel val-
ues are scaled by the same factor. Uniform dimming is imple-
mented on many commercial laptops and smartphones and is a
surprisingly effective technique [CWM#*24]. Shye et al. [SSM09]
found that gradual dimming can improve user satisfaction, Gatti et
al. [GABRO2] dim the display more in dark compared to bright am-
bient conditions, Park et al. [PS16] reduce the luminance channel
of videos, and Choi et al. [CSC02] compensate for backlight dim-
ming by letting more light through the display’s color filter array.
[KDO6] introduced a clipping curve, which decreases highlights
and preserves mid-tones. A number of works also modulate color
in OLED displays [DZ11; DZ12]. These methods, however, do not
adapt to the specific image content being displayed.

Perception-Guided Approaches A number of previous works
have proposed techniques that take advantage of human limita-
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tions in luminance or color perception. For example, Yan et al.
[YSLX18] dim the display over time based on a temporal bright-
ness adaptation model. For wide field of view displays like VR and
AR, Kim et al. [KL20] developed an eye-tracked peripheral dim-
ming technique and Duinkharjav et al. [DCT*22] proposed a pe-
ripheral color modulation technique for OLED displays. Surace et
al. [SCD25] developed a temporal uniform dimming for VR that
attempts to minimize detail loss. Recent work has explored power
optimizations in high dynamic range (HDR) VR via studies of hu-
man contrast and luminance preferences [CMM*25]. Despite tak-
ing into account human perception, these techniques do not con-
sider the spatial distribution of the displayed content.

Optimization-Based Methods Another line of work optimizes an
objective to produce power-efficient imagery [SDL24]. For exam-
ple, Hadizadeh et al. [Had17] used a saliency model as an objec-
tive to optimize display power and Lee et al. [LLLKI12] used a
histogram-equalizing term as an objective. In this work, we fo-
cus on machine learning techniques for display power optimiza-
tion. Most of these works train a neural network that takes as input
an image and outputs a dimming map, which when applied to the
input image results in an output that requires less display power
to show [AR22; LDB23; ITU24]. Techniques have been proposed
that can invert the power-optimized image to recover the original
[MD23]. Ameur et al. [ADMM25] include a display power-aware
block in an encoding pipeline. However, we found that the quality
gains compared to a simple uniform dimming baseline were min-
imal, and that validation criteria could be improved. For example,
Le Meur et al. [LDB23] found that, at most, their technique im-
proved upon uniform dimming by 0.05 SSIM score and at worst
was the same as uniform dimming in terms of peak signal-to-noise
ration (PSNR).

Evaluation Strategies The way in which the previously-described
techniques are evaluated is not standardized. This lack of standard-
ization leads to difficulty in comparing different techniques, espe-
cially when considering different display architectures. For exam-
ple, Kerofsky et al. [KDO06] used metrics to validate their highlight
clipping curve, Dong et al. [DZ11] conducted user surveys to evalu-
ate their UI color modulation, Kim et al. [KL20] ran a psychophys-
ical study to measure thresholds for their peripheral dimming, and
Wee et al. [WCB18] conducted a task-based study for several tech-
niques. Previous ML-based techniques for display power optimiza-
tion were evaluated by comparing the average of metric results
(e.g. PSNR and SSIM, which may not correlate well with subjec-
tive judgments) over a number of test images. None of the prior
ML works, from what we can find, have evaluated their techniques
in a subjective study. This makes drawing comparisons between
methods challenging. The PEA-PODs project [CWM#*24] provides
a unified framework for subjective measurement of the perceptual
impact of power saving techniques on a single perceptual JOD
scale. In this work, we conducted the first subjective study to eval-
uate a deep learning power saving technique using this framework,
and then rescaled our results to those of PEA-PODs, allowing us to
make comparisons with other methods on the same JOD scale.
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Figure 2: Here, we show our pipeline for generating power-
optimized images. First, an input image is passed to a model to
generate a per-pixel dimming map. The input image is then multi-
plied by the dimming map to create the output. A loss between the
input and output is computed to optimize the network weights.

3. Display Power Optimization Algorithm

Here, we define a simple paradigm that can serve as a baseline for
future ML-based power optimization algorithms for VR displays.
An input image to be displayed, Z, is modified by a neural net-
work, M, to produce a more power-efficient image, Z*. The neural
network’s output is a per-pixel dimming map D = M(I), which is
applied to the input image Z using some element-wise operator, f,
to produce a power-optimized output image,

T = /(I,D). )

A visualization of our pipeline is shown in Figure 2; notably, the
dimming map D consists of a single-channel. Alternative schemes,
such as a 3-channel dimming map or using different operations f
led to worse performance, including significant chromatic distor-
tions and halo artifacts (see Appendix Section 9.2).

3.1. Loss Functions

The model is optimized with a combination of perceptual and dis-
play power loss functions,

IT* =argmin £(Z,Z7) + Lp(T,T7, ). Q)

1'*

This is inherently a self-supervised scheme, in which there is no
ground truth power-efficient image. Instead, the quality of gen-
erated images is a function of the losses used to train the neural
network. As such, loss functions that align with human perception
should be used to produce images that human users prefer. In this
work, we found that a combination of VGG [JAF16] and SSIM
[WBSS04] losses works well for this task,

L(Z,T") = Wae - Lvaa(T,Z°) +Assiv - Lssm(Z,Z7),  (6)

where l(_) are weights on each loss term. In this work, we use
Avgg = 0.5 and Agspy = 5.0. See Section 4.2 for an ablation on
these weights. The Lygg is a perceptual loss function based on the
features extracted from a pre-trained VGG-19 network, and Lssiv
is a perceptual metric that takes into account structure, luminance
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Figure 3: We plot target vs. actual power savings as violin plots.
x-axis is target and y-axis is actual power savings from ML-PEA.

and contrast. Similar to prior art, we included a power loss function,
* * 2
Lp(L,T%,0) =p- (P(T7) —a-P(T))", (7

that computes the difference between the output image’s power
consumption and that of the input image, scaled by a. We set
Ap = 50.0 in our experiments. Here, o is used to control the target
power saving rate and is set to values of a = {0.55,0.68,0.83} in
our quantitative evaluation and user study. Our work optimized the
power consumption for an OLED display, and the power model
in this loss, P(-), is the OLED model from Duinkharjav et al.
[DCT*22] which has the same form as Equation (1). As such, our
model works best for an OLED display with per-primary weights
similar to this display. We show in Figure 8 that this is the case,
where the power savings for a different display architecture are
lower. A new model would have to be trained for a new display
modality, using the appropriate power model and loss function.

3.2. Model Architecture and Training

We train a U-Net architecture [RFB15], which has not been used
in prior works for the display power optimization task. The U-
Net has the same structure as described in the original paper from
Ronneberger et al. [RFB15]. During training, the input image, Z,
to the U-Net model is of resolution 256 x 256 x 3, which are ran-
domly cropped from the ground truth images. A sigmoid function
is applied to the output dimming map to constrain the output to the

Table 1: Average scores are tabulated for both methods, at the
three target power saving rates studied. We omit actual power
saved for uniform dimming because it is matched to ML-PEA.

Target Method PSNR (dB)1T SSIMt CVVDPJOD)T Saved

17%  Uniform Dim 28.22 0.99 9.99 -
ML-PEA 27.94 0.99 9.93 17.72%

32%  Uniform Dim 21.96 0.96 9.97 -
ML-PEA 21.82 0.98 9.81 33.61%

45%  Uniform Dim 19.08 0.93 9.92 -
ML-PEA 18.81 0.96 9.55 44.91%

range [0, 1]. This means that the output pixel intensities are neces-
sarily less than or equal to those of the original, because they are
multiplied by a factor between 0-1.

The U-Net is trained on the DIV-2K dataset [AT17], which con-
sists of 800 training images and 100 test images. The dataset con-
tains diverse, high-quality photographs, and are 2K resolution (at
least one axis, height or width, is greater than 2K pixels). We
trained models for 60 epochs, and used the Adam optimizer [KB14]
with a learning rate of 2e-4. We selected a batch size of 1, the same
as in Ronneberger et al. [RFB15], to allow for larger input images
during training and to maximize GPU usage. All networks were
trained on an HPC cluster using a single NVIDIA V100 GPU.

Remark We note that our primary goal was to evaluate ML tech-
niques for display power optimization, and in doing so have defined
a simple pipeline that acts as a baseline for this task and in addition
performs well compared to prior art (see Results Section 4).

4. Results

First, we show evaluations of ML-PEA via metrics, as well as sev-
eral qualitative visualizations of ML-PEA. Note that, unless other-
wise stated, power savings are computed using the OLED display
power model from Duinkharjav et al. [DCT*22], which is the same
model used to train the network. Furthermore, while images during
training are randomly cropped (via PyTorch’s RandomCrop), all
inference is done on full-resolution images. Structure is preserved
due to U-Net’s skip connections that help recover spatial detail that
may have been lost during pooling, as can be seen in example out-
puts. This also helps to avoid the vanishing gradient problem.

4.1. Quantitative Evaluation

We evaluated the performance, plotted in Appendix Figure 8, of our
ML-PEA pipeline on the generated images. Results on the DIV2k
test set are displayed for three metrics: PSNR, SSIM [WBSS04],
and ColorVideoVDP [MHA*24]. These metrics are run on images
generated by ML-PEA at three target power saving rates, 17%,
32%, and 45% (the power saving rates used in our subjective study,
described in Sec. 5), as well as uniformly dimmed images at a
matched power saving rate. Refer to Table 1 for a tabulated version
of these results and Appendix Section 8 for additional discussion.

Note that even though we trained ML-PEA on three unique tar-
get power saving rates, the model’s output does not match these
targets exactly. We show the extent of this in Figure 3, where in-
dividual violin plots represent the distribution of power savings for
ML-PEA run on the 100 test images in the DIV2k dataset for a
specific target power saving rate, o.. From this plot, it seems that,
as o increases, the variation in actual power savings increases. We
hypothesize that this could be due to the fact that metrics perform
worse for high power saving rates, and so the tradeoff is poor per-
formance on the power optimization task. A potential solution to
this could be to increase the weight on the power loss for higher
target power rates. The output also depends in some way on image
statistics (see Appendix Section 11.1).

The distribution of scores is very different across the three met-
rics. PSNR between uniform dimming and ML-PEA are nearly
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Figure 4: We show ML-PEA (orange) and uniform dimming
(green) images for different loss functions, all of which have a 45%
target power saving rate. Plots show linear RGB values for the
reference versus the ML-PEA image for each color channel. The
identity is plotted as a black dash and the uniformly-dimmed image
as a green dash. Reference images are shown at top.

identical, whereas SSIM scores are largely better for ML-PEA.
JOD scores predicted by ColorVideoVDP are almost always sig-
nificantly lower (worse quality) for ML-PEA than they are for uni-
form dimming. This is to say that the proper metric for evaluating
ML display power optimization algorithms is yet to be determined;
SSIM and PSNR metrics used in prior works can yield wildly dif-
ferent conclusions. We analyze a wider set of metrics in Appendix
Section 10, however, and suggest an improved evaluation protocol.
In prior art [LDB23], metric results are compared with their cor-
responding target power savings. If actual power savings greatly
differ from the target, these metric comparisons may be unfair. For
example, a high metric score could correspond to actual power sav-
ings much lower than the target, which is undesirable. We recom-
mend that comparisons of metric scores be computed on images
with matched power savings. As such, in this and the subjective
evaluation, we compare with uniform dimming because it is a sim-
ple method that performs surprisingly well [CWM?*24] and has pre-
dictable power savings.

4.2. Ablation Study

A sweep of the weights on each loss function, SSIM and VGG, was
conducted. As shown in Figure 4, with only a VGG loss, generated
images have halo artifacts around edges (see around bird), whereas
images generated with SSIM do not show these halos, but exhibit
high-frequency distortions which are made clear in the right scat-
ter plot. The combination of the two loss terms greatly mitigates
both. Metric scores are included in Figure 4, where scores for the
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Figure 5: Example input images outside of the training dataset are
shown here. We show the reference (®), uniform dimming (e), and
ML-PEA (¢) images as well as the dimming maps (see Figure I for
scale). Plots of the mapping (similar to Figure 4) between reference
and ML-PEA outputs are shown in the top right of each dimming
map. Matched power savings are shown in the inset plots.

VGG+SSIM condition are higher, with a better match to the target
power rate. See Appendix Sections 9.1 to 9.3 for ablations on the
number of dimming map channels, the application function f, and
comparisons to prior art.

4.3. Generalization

We tested the ability of our model to generalize to images not part
of the DIV2K training dataset. We collected a number of photos
taken with two different smartphones and a DSLR camera. Images
are variable in resolution, ranging from 1400x933 to 6000x4000.
We found that despite the different characteristics of these im-
ages, ML-PEA produced good outputs. Qualitative comparisons
with uniform dimming are shown in Figure 5, all generated with
ML-PEA trained at target 45% power savings (o0 = 0.55). Exam-
ples with zoomed insets are shown in Fig. 6. Additional results are
shown in Appendix Section 12.

5. User Study

Prior art in ML-based display power savings used metrics exclu-
sively to evaluate the effectiveness of their algorithms. However,
as shown in Sec 4.1, metrics often have inconsistencies, and con-
sequently this analysis is insufficient. Here, we describe the first
subjective study validating a deep learning-based method for dis-
play power savings. In this study, we use the same study protocol
and stimuli as PEA-PODs [CWM#*24] to allow comparisons be-
tween our results and the display power optimization techniques
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Uniform Dimming  Reference

ML-PEA

Figure 6: We show more examples, with zoomed insets. Power
savings are 54% and 49% for left and right images, respectively.

studied in their work. Specifically, we compare ML-PEA with uni-
form dimming because it is easy to implement and yields good sub-
jective results in a VR setting [CWM#*24]. Furthermore, uniform
dimming is a good baseline because it yields controllable power
savings (equal to the percentage of dimming).

Participants We recruited 10 users (8M/2F, 22-34 years of age),
all of which had normal or corrected-to-normal vision. We note
that the gender of participants was unbalanced; we confirmed, via
outlier analysis (see Section 4), that results for female participants
were not significantly different from those of the overall participant
pool. An Institutional Review Board (IRB) approved the study, and
participants gave informed consent before starting the experiment.

Stimuli User study stimuli were displayed on a Meta Quest Pro
commercial VR head-mounted display (HMD). The display has a
resolution of 1800 x 1920, and a vertical/horizontal field of view of
95.57° and 106°, respectively.

We used 5 stereoscopic videos, all of which are frustums of the
360° videos from the PEA-PODs study [CWM?*24]. These include
three real-world videos captured by a stereo 360° camera from
the LIVE-FBT-FCVR database [JCG*19; JCB*20; JCG*21], and
two scenes that represent scrolling and video watching applica-
tions. Frustums were sampled at the most salient gaze positions for
each 360° scene, as defined by gaze data collected in PEA-PODs.
Videos have a resolution of 1800 x 1920, the same as that of the
VR hardware, and were 10-12 seconds long. Head-tracked, 360°
videos were not used because our method was not implemented to
run in real time.

Uniform dimming and ML-PEA were applied to each video. The
techniques were applied at target power saving rates of 17%, 32%,
and 45%. ML-PEA is unable to match the exact target power sav-
ing rate, as described in Section 4.1. In order to make comparisons
fair, we match the power saving rate of uniform dimming by scal-
ing frames by the average savings across all frames of the stimuli

with ML-PEA applied. We show the power savings of representa-
tive frames for each scene for both techniques in Figure 7.

In total, the study consisted of 5 videos x 2 display optimiza-
tion techniques x 3 power saving rates = 30 conditions. A full de-
sign would result in (320) =435 trials. Assuming a participant takes
about 15 seconds to complete a trial, this naive design would take
around 2 hours to complete. To speed up data collection, we used
an active sampling protocol, ASAP [MWP*21], which schedules
comparisons so that each trial provides optimal information gain.
This allows us to sample one trial per study condition, reducing the
number of trials to 30. Our final study consisted of two repeats of
this protocol, for a total of 60 trials per user.

Experiment Procedure Participants are first read the instructions
shown in Appendix Figure 14. We follow the two-interval forced
choice (2IFC) protocol, which has been shown to produce less
noisy results and an easier task for users [MTM]12]. Participants
were seated for the duration of the study, and are first presented
with a reference, unmodified, video to start each trial. They can then
freely swap between this reference and two test videos by clicking
on keyboard buttons. A test video can either be the reference video,
the uniformly dimmed video, or the video with ML-PEA applied.
Users are asked to select the video which contains fewer distor-
tions and is closer to the reference. A 500 ms gray blank is shown
when users switch stimuli so that participants cannot make direct
comparisons. The results of the user study were anonymized.

5.1. Study Results

We scale our user study results to a perceptual just-objectionable-
difference (JOD) scale using the pwcmp algorithm described by
Perez-Ortiz et al. [PM17]. Notably, JOD units can be converted to
intuitively interpretable percentage preference values. For instance,
a difference in 1 JOD between method A and B indicates that par-
ticipants selected method A 75% of the time over method B (see
Appendix Section 13.2 for more). The scaled results are shown (as
stars) in Figure 8 for both uniform dimming and ML-PEA. Out-
liers were detected, via pwcmp, if observers had an inter-quartile-
normalised score above 1.5. We found 1 outlier participant using
this procedure, who was subsequently removed from our analysis.
Error bars are computed via bootstrapping. In Figure 8, the refer-
ence condition (black shaded area) itself has an error bar because it
was a condition in our study.

An N-way analysis of variance (ANOVA) was run on the re-
sults. We found that the main effect of display power optimization
technique (ML-PEA vs. uniform dimming) on JODs is significant
(p = 0.0007), and that the main effect of method strength (&) on
JOD scores is significant (p < 0.05). The effect of scene on JODs
was not found to be significant (p = 0.08). Mean JODs of ML-
PEA and uniform dimming applied at the same strength level are
only significantly different at level 3 (45% target power savings).

5.2. Re-scaling to PEA-PODs Data

In order to make comparisons between the results of our study and
those of PEA-PODs, we have to rescale the JOD scores of our study
to the scores of their dataset. We define rescaling as an operation

© 2026 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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Figure 7: All scenes used in the user study with both techniques, ML-PEA () and uniform dimming (e), applied are shown here, as well as
the corresponding power savings for the displayed frames. The levels (1, 2, and 3) correspond to the strengths of application of the power-
saving techniques. They correspond to roughly 17%, 32%, and 45% target power savings (uniform dimming power savings were averaged

across frames to match those of ML-PEA).

that maps quality scores from one study to the range of another.
This operation is required because, for the same distortion applied
to a piece of content, quality scores can vary in magnitude between
different studies (even though quality scores may have the same
relative order within studies). To start, our results for uniform dim-
ming are rescaled to PEA-PODs using a linear model,

JODpEa-poDs = a-JODwmL-pEA + b, (®)

where a and b are parameters to be optimized. Uniform dimming
was selected for this purpose because it is a distortion contained
in both our study and that of Chen et al. [CWM*24]. This lin-
ear function is applied to all JOD scores collected in our study
(JODpML-pEA ), mapping them to the JOD scale of PEA-PODs.

Note that the power saving rates for uniform dimming differ
from those used in the PEA-PODs study, because we match them
with ML-PEA across scenes in our study. To account for this mis-
match in power savings, we first computed the cross-scene mean
power savings for both uniform dimming and ML-PEA, and ap-

© 2026 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

plied a transfer function, W¥: a non-linear model fit to uniform dim-
ming power saving rates (o) versus JOD data, JODpga_pops; =
Y(u), using the Weibull distribution function.

The results of this procedure are shown in Figure 8, where
our results are compared to the techniques studied by Chen et al.
[CWM*24]. To allow for easier comparison of techniques across
different power saving rates, we evaluated ¥ (o) for each rate inde-
pendently (visualized as dotted lines). We use the function parame-
ters from PEA-PODs for all methods except the ones studied in this
work (uniform dimming and ML-PEA), for which we computed a
linear fit.

Discussion The technique offering the best power savings for the
OLED display (left plot in Figure 8) is the Brightness Rolloff. How-
ever, this technique requires active eye tracking, which itself in-
curs significant power costs [CWM#*24]. Next, Dichoptic Dimming,
ML-PEA, and Uniform Dimming have similar performance. No-
tably, ML-PEA performs the best of any non-eye tracked method for
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are transfer functions fit to the data.

power savings of ~ 26% and more, and is preferred over uniform
dimming by 61.5% of users (0.43 JODs) for high power saving
rates. In LC displays with a global dimming backlight (right plot
in Figure 8), brightness rolloff yields no power savings because
the central region (at the eye gaze position) remains unchanged.
Furthermore, the color modulation techniques yield no power, as
discussed in Section 2. The top two techniques are Dichoptic Dim-
ming and Uniform Dimming. Our ML-PEA technique has the next
best performance. Note that the difference in power savings be-
tween OLED and LC displays is due to the specific power model
used in the power loss function that our model is optimized with.
The power consumed by a global dimming LC display is related to
the maximum pixel intensity in the image, which is not optimized
for in our pipeline.

6. Limitations and Future Work

While ML-PEA provides optimal results for key power saving con-
ditions, it also has some limitations. First, our analysis does not
cover the computational cost or speed of the explored techniques,
focusing only on display power. This is sufficient for applications
that involve pre-rendered content, such as video streaming. How-
ever, it is not appropriate in a power-constrained, real-time envi-
ronment like those present in VR gaming, where the costs due to
inference computation would impact the expected savings rate. Fu-
ture work evaluating and optimizing the inference cost and speed
of ML-PEA would help extend it to these applications. VR sys-
tems that already contain ML modules, e.g. for foveated render-
ing [KSL*19], may be able to implement our pipeline in addition.
Current commercial systems already show promise in producing
real-time ML-based vision systems on-device [Cad24].

Although our model does not explicitly incorporate time-varying
effects, no temporal artifacts were observed during development

and evaluation of ML-PEA. This may be due, in part, to lack of
extreme frame-by-frame changes in the reference videos, as well
as the non-stochastic nature of U-NET. If present, temporal incon-
sistencies would lead to lower JOD scores in a subjective study
like the one presented in this work. Future work could explore loss
functions or models that incorporate spatial and temporal features.
In addition, the implementation of ML-PEA described in this work
is trained on specific target power saving rates. The method could
be further extended by incorporating the target savings rate as an
input to the model.

7. Conclusion

We proposed a deep-learning-based solution for optimizing display
power savings while maintaining image quality. We demonstrated
that the evaluation methodology used by previous ML-based meth-
ods is likely insufficient, and proposed robust alternatives based
on recent subjective study protocols. We validated our method’s
performance using these techniques, and found that it has compet-
itive performance with state-of-the-art techniques, obtaining best-
in-class results in some cases. Our work serves as a baseline and
provides a subjective evaluation framework that can be used for
future development of ML-based display power saving models.
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