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Figure 1: Azimuth-based audio perceptual acuity guided sound source clustering. (a) visualizes our model-predicted human
auditory perception of spatial discrimination threshold along azimuth eccentricity in degrees. (b) illustrates the model-derived
audio source clustering method. Based on listeners’ heading direction (assuming forward here), we cluster audio sources that
are spatially indistinguishable. Clusters were highlighted by colors corresponding to the human’s minimum audible angle. The
number of sound sources for each cluster is marked in the figure. Our measurement shows a 53% computational saving at the
presented scene.

ABSTRACT

Realistic spatial audio rendering improves immersion in virtual en-
vironments. However, the computational complexity of acoustic
propagation increases linearly with the number of sources. Conse-
quently, real-time accurate acoustic rendering becomes challeng-
ing in highly dynamic scenarios such as virtual and augmented
reality (VR/AR). Exploiting the fact that human spatial sensitiv-
ity of acoustic sources is not equal at azimuth eccentricities in
the horizontal plane, we introduce a perceptually-aware acoustic
“foveation” guidance model to the audio rendering pipeline, which
can integrate audio sources that are not spatially resolvable by hu-
man listeners. To this end, we first conduct a series of psychophysi-
cal studies to measure the minimum resolvable audible angular dis-
tance under various spatial and background conditions. We lever-
age this data to derive an azimuth-characterized real-time acoustic
foveation algorithm. Numerical analysis and subjective user stud-
ies in VR environments demonstrate our method’s effectiveness in
significantly reducing acoustic rendering workload, without com-
promising users’ spatial perception of audio sources. We believe
that the presented research will motivate future investigation into
the new frontier of modeling and leveraging human multimodal per-
ceptual limitations — beyond the extensively studied visual acuity
— for designing efficient VR/AR systems.

Index Terms: Perception, Virtual reality, Mixed/Augmented real-
ity.
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1 INTRODUCTION

Wearable graphics systems, such as untethered VR/AR headsets,
often struggle to balance high-fidelity rendering demands against
low computational resources. Adaptively allocating compute to
render content in alignment with human perceptual sensitivity,
an area in perceptual graphics, has emerged as a promising ap-
proach to tackle this challenge. For example, in the past decade,
visual foveated rendering techniques have been extensively pro-
posed, exploiting the visual acuity degradation in the periphery
[40, 54, 26, 61]. Such perceptually-guided methods successfully
reduce compute demands without compromising visual experience.
However, perceptually-aware audio propagation and rendering is
still under-investigated, despite its importance in real-time, interac-
tive and immersive applications such as VR spatial audio rendering.

With computational demand of acoustic rendering increasing
with the number of audio sources, efficiently rendering high-fidelity
spatial audio in complex auditory environments continues to be a
significant challenge. Particularly, generation of late reverberation
(LR) [51], which has to be computed for each audio source prop-
agating through the 3D scene, poses a major bottleneck. While
there are methods that improve acoustic rendering by filtering or
clustering audio sources [59, 51], they do not fully take into ac-
count the human perceptual ability for spatial audio localization.
Consequently, prior techniques fall short in achieving perceptually
optimal computation and compromise perceived audio quality.

In this work, we introduce “foveation” to acoustic rendering.
Specifically, we exploit the gradual decline in human spatial au-
ditory acuity as sound sources move away from the central azimuth
axis, and establish a probabilistic computational model that esti-
mates human spatial audio localizing sensitivity. Our work goes be-
yond existing psychoacoustic findings, and provides a novel frame-
work for clustering audio sources based on perceptual thresholds
identified from a large-scale human audio perception data collected
via subjective studies. Informed by the model, we developed a



perceptually-guided audio source clustering approach that reduces
the computational load — up to 94.9% with as large as 300 simulta-
neous audio sources — without compromising listeners’ perception
of spatial sound.

To this end, we first design and conduct a series of psychophys-
ical studies on the minimum audible angle (MAA) [37] to as-
sess the human’s spatial sensitivity to auditory sources across the
azimuth plane. We observe that the results consistently exhibit a
positive correlation between the discrimination threshold and az-
imuthal eccentricity. From numerical analysis, we derive a real-
time perceptually-aware approach that adaptively manages avail-
able audio sources in the scene. In particular, guided by our model,
we cluster audio sources in a way that is imperceptible by humans
with the tracked information of users’ head position and heading
direction. Subjective evaluation studies demonstrate our method’s
effectiveness in significantly reducing audio rendering workload
without compromising spatial audio quality. We hope that our re-
search will inspire new frontiers in perceptual graphics to study and
leverage multimodal perceptual abilities, beyond vision.

Scope of Work. The primary goal of this work is to provide a
probabilistic mathematical framework for clustering audio sources
that cannot be spatially distinguished due to human perceptual sen-
sitivity of spatial audio. The proposed clustering framework offers
a more efficient spatial audio rendering approach. Although we do
not derive new audio propagation algorithms in this paper, sound
synthesis and audio propagation catered to spatial audio rendering
with acoustic “foveation” in complex 3D environments is an excit-
ing future work.

2 RELATED WORK

2.1 Audio Rendering and Propogation
Realistic sound propagation simulation significantly enhances the
immersion of a virtual scene by computing the environmental re-
sponse to a specific source signal, thereby enhancing a user’s sense
of presence in VR. The simulation of sound propagation includes
multiple methods. Wave-based methods solve the acoustic wave
equation to simulate acoustic effects accurately [32, 33]. On the
other hand, the geometric methods assume sound travels along a
straight line with specific energy attenuation [38, 51, 16]. These
methods are generally faster to compute than the wave-based tech-
niques, but are incapable of simulating low-frequency acoustic phe-
nomena such as diffraction accurately. Currently, their application
is limited to static scenes with few objects, and they are imprac-
tical for scenes containing numerous sources. Spatial impulse re-
sponse rendering (SIRR) is another way to render localized sound
events in reverberant environments [35, 44]. These audio propa-
gation algorithms have achieved precise acoustic effect simulation
considering complicated virtual scenes and have been developed in
multiple software packages and implemented in VR applications
[49, 48, 50, 10, 55, 46]. However, these techniques still face a
challenging dilemma – the computational requirements of sound
propagation algorithms increase linearly with the number of audio
sources [51].

Many techniques have been proposed to reduce these compu-
tational requirements, including through interpolation [63], adap-
tive techniques [6], or by considering analogs of optimizations to
traditional visual rendering methods [23, 58]. Earlier techniques
took advantage of the fact that sound sources may mask each other
[4, 39]. Similar to our technique, many approaches aim to cluster
multiple audio sources to reduce the number of sources that need
to be rendered. For example, [59] proposed a technique to cluster
sound sources based on spatial deviation, following the [20] heuris-
tic, which leverages a recursive method to improve the clustering
approach. [51] observe that distant or occluded sound sources can
be difficult to distinguish individually and cluster the sound sources
based on this phenomenon. However, these clustering techniques

follow heuristics and are not necessarily optimized with human au-
dio perception.

2.2 Foveation

The performance of the human visual system is non-uniform across
the visual field with visual acuity decreasing in the periphery. Tak-
ing advantage of this visual performance falloff, foveated rendering
vastly reduces compute demands in VR by allocating a higher ren-
dering budget near the fovea and less in the periphery [40, 53]. Fur-
ther leveraging the visual acuity difference by eye-dominance [34],
attention [26], retinotopy [64], local contrast [61], visual metamers
[57, 56], and scene-awareness [15], foveated rendering can achieve
better perceptual quality with reduced compute cost. This tech-
nique has also been extensively used in multiple VR/AR applica-
tions, such as AR holography [7], light field [54], display power
[14, 11], and view synthesis in VR [13].

While these concepts have been extensively studied for vision,
the concept of “foveation”, which reduces computational costs in
low-acuity areas while maintaining perceptual quality, has been
largely overlooked in audio research. To our knowledge, we still
haven’t found a comprehensive computational model that can re-
duce the number of audio sources without compromising perceived
spatial audio quality to provide acoustic “foveation” guidance for
VR/ AR applications.

2.3 Human Auditory Perception

Spatial audio is crucial in Virtual/ Augmented Reality [12, 19]. For
example, prior art have studied human sound localization ability in
web VR [45]. Studies have found that audio significantly affects
people’s experience in VR [5, 9, 8] and improves users’ depth judg-
ment in AR [3]. Integrating with the visual cue, audio could lower
the reaction latency [24, 41] and increase the target localization ac-
curacy [3] in VR interactive applications. However, mistakenly ren-
dered audio, like spatially incongruent sound, can degrade visual
performance [31]. Therefore, understanding audio perception is es-
sential to provide algorithmic guidance for next-generation VR/AR
applications

We want to discover in what range the audio source clustering is
not noticeable by humans. The minimum audible angle (MAA),
defined as the smallest detectable angular difference between two
identical sources of sound [37], has been proposed to measure hu-
man audio localization capability [42, 52, 29, 18]. Several variables
have been found to increase MAA, including increased azimuthal
eccentricity [37] and increased age [28]. A study by [43] found that
the MAA is significantly higher when sound sources are distributed
on the horizontal rather than on the vertical plane. Although the
above works thoroughly explain the minimum audible angle, to our
best knowledge, there is still no algorithmic model that can predict
the MAA as a function of the audio’s spatial direction of arrival
considering natural background noise. Our work aims to establish
a MAA prediction model, which can be used to provide guidance
for the sound sources clustering method in audio rendering.

3 PILOT STUDY: MEASURING HUMAN SPATIAL ACUITY OF
AUDITORY SOURCES

In order to acquire the guidance of the source clustering method,
we studied human auditory perception from various perspectives.
First, we conducted a main study for identifying the spatial audio
localization acuity along azimuth (Section 3.1). Then, consider-
ing the complexities in natural environments where multiple sound
sources may concurrently exist, we conducted another generaliz-
ability study to measure the spatial auditory sensitivity with back-
ground noises (Section 3.2). We recruited a large group of partici-
pants for a large-scale data collection to derive a perceptual-aware
sound source clustering algorithm (Section 4). Additionally, we
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Figure 2: Study protocol and procedure. (a) shows the protocol and stimuli of our main study (detailed in Section 3.1). Participants were
asked to determine the relative directions of two spatial audio events played sequentially. The minimum audible angle, MAA, and azimuthal
eccentricity, a, are defined as illustrations. Angular offset, ∆θ , was controlled by the staircase procedure based on the participant’s responses
during the study. (b) presents the stimuli of our generalizability study (detailed in Section 3.2), which consisted of 4 audio sources placed
at a participant’s north/south/east/west to simulate background noise. (c) shows our study procedure. The 1-up-2-down staircase procedure
decreases the angular offset ∆θ presented in (a) after a user answers correctly twice (purple scatter points), and increases ∆θ if the user
answers incorrectly once (yellow scatter point). The procedure was continued until either a total of seven reversals were reached or 50 trials
were completed, whichever occurs first. We implemented a 1-up-1-down (grey shaded region) before the first reversal for faster convergence.
The discrimination threshold (dashed green line) was obtained by averaging the last 3 reversals in the study.
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Figure 3: Pilot Study results. (a) visualizes the measured MAA (y-axis) with regard to azimuth (x-axis) in the main study. (b) shows the
measured MAA with different SNR in the generalizability study. Error bars represent the standard deviation. (c) illustrates the aggregated
MAA without/ with background sounds in different SNR. (d) shows the aggregated MAA on different sides with regard to the zero azimuthal
eccentricity. Please refer to Figure 4 and Figure 10 for per-subject results.

also included a small participant group for larger individual sam-
ple sizes to validate the masking effect of background noise. Since
the audio localization capability is significantly higher when audio
sources differ in azimuth than in elevation [43], our study concen-
trated on azimuth to measure the minimum audible angle.

3.1 Main Study: Auditory Discrimination Across Az-
imuths

Setup and participants Our psychophysical study was con-
ducted with audio played on the Sony WH-1000XM5 headphones.
We recruited 20 participants (ages 21-31, 10 female, 10 male) with
normal hearing. During the study, participants remained seated in a
completely quiet room and perceived spatial audio stimuli through
the over-ear headphones, minimizing the environmental noise. We
disabled the active noise-canceling function to eliminate any poten-
tial interference from its filtering effects.. Participants interacted
with the study software using a keyboard. The study was approved
by an Institutional Review Board (IRB).

Tasks and Stimuli As shown in Figure 2a, we measured the
participant’s minimum audible angle (MAA) using a two-interval

forced choice, (2IFC) task. During the study, the participants re-
ceived

1. an audio event followed by another audio event, and

2. pressed a button on a keyboard to report whether the second
audio was to the left or right of the first audio.

The audio events were two 20 Hz–20K Hz white noises, both
with an intensity of 56dB, rendered in the Unity engine. Same as
prior VR audio perception study, [17, 24] We adopted the Meta
Oculus SDK for audio spatialization. The 2 audio events were
played sequentially per trial, each lasting 200ms with a 200ms
break between each. The experiment studied three azimuthal ec-
centricities at a = 0◦, ±30◦, ±60◦. The audio events were pre-
sented around this direction on the azimuth plane, with one played
at a+∆θ and the other at a−∆θ (shown in Figure 2a).

Procedure The experiment followed a one-up-two-down 2IFC
staircase procedure. Each trial included a 2IFC task where par-
ticipants needed to discriminate the relative directions of sound
sources. We adopted the MAA (as described in Section 2.3 and il-
lustrated in Figure 2a) to determine human audio-spatial perception



([30, 37]). At the start of each trial, we shuffled the relative direc-
tions of two sequentially presented sounds, with the first played to
the left or right of the azimuthal reference and the second played to
the opposite side with the same angular offset ∆θ .

The one-up-two-down staircase procedure determines the an-
gular offset (illustrated as ∆θ in Figure 2a) between audio event
and the reference azimuthal eccentricity and makes the task harder
or easier depending on the user’s response. As shown in Fig-
ure 2c, starting from an angular offset of 10 degrees (∆θ = 10◦),
the 1-up-2-down staircase procedure increases ∆θ after one in-
correct response and decreases it after two consecutive correct
responses. The step for these adjustments of ∆θ was preset
and changed after each reversal following a descending order at
{2,2,1,1,0.5,0.5,0.25} degrees during the staircase procedure.
The staircase terminates after 7 reversals of this procedure or a max-
imum of 50 trials. We implemented a 1-up-1-down before the first
reversal for faster convergence. The discrimination threshold was
determined by averaging the last three reversals in the study. The
measured threshold of MAA was calculated as 2 ·∆θ .

Conditions We assume that MAA is symmetrical with respect
to the zero azimuthal eccentricity, and treat conditions at a =±30◦
and a = ±60◦ as two repeats at a = 30◦ and a = 60◦. For fair
cross-condition data collection, we repeated the staircase for zero
azimuthal eccentricity (a = 0◦). Participants completed 6 (3 az-
imuthal eccentricities × 2 repeats) staircases with breaks in be-
tween. The study takes approximately 15 minutes for each par-
ticipant to complete.

Results As shown in Figure 3a, the minimum audible angle
(MAA) increases with azimuthal eccentricity from 3.46◦ at a = 0◦
to 26.09◦ at a = 60◦. A one-way ANOVA shows the effect of az-
imuthal eccentricity on MAA is significant (F2,117 = 148.69, p <
.01), and a Pearson correlation test confirmed a statistically sig-
nificant positive correlation (r118 = .84, p < .01). Please refer to
Figure 4 for measured MAA per subject.

3.2 Generalizability Study: Validating Masking Effect of
Background Audio

The study above provides us with data that suggests MAA signifi-
cantly degrades along azimuthal eccentricities. Another considera-
tion is that in both natural world and computer graphics applications
(such as animation and gaming), massive numbers of sound events
may occur concurrently [32]. The cocktail party effect [1] is a phe-
nomenon in which humans exclude auditory targets from conscious
awareness which are not the main focus. This effect inspired us to
validate the feasibility of masking non-target background audio.

Stimuli and conditions We simulated background noise by
placing 4 additional audio sources at 90◦ steps around the user
(a = 0◦,180◦,−90◦,90◦), shown in Figure 2b. The background
noise was the same full-spectrum white noise as in Section 3.1, but
with lower intensity volume, vbg = 50dB. Background noise was
played constantly per trial. For the foreground audio event, we in-
cluded two extra novel intensities not seen in Section 3.1, resulting
in 3 intensities for foreground sound events (v f g = 50/56/62 dB)
and 3 signal-to-noise ratios (SNR= 0/6/12 dB). The procedure re-
mained the same as the 1-up-2-down 2IFC staircase. We included
18 staircases (3 SNR × 3 Azimuthal eccentricities × 2 repeats) con-
ducted per participant. The study takes approximately 45 minutes
for each participant to complete. We recruited 6 users (ages 18-30,
2 female, 4 male) for this generalizability study.

Results As shown in Figure 3b and Figure 3c, the av-
erage MAA aggregated across azimuthal eccentricities was
14.8◦/16.2◦/15.5◦ at SNR= 0/6/12, respectively. Within the
range of 0 ≤SNR≤ 12, the ANOVA test didn’t evidence that the
SNR has a significant effect on the MAA(F2,105 = 0.18, p = .83).

Compared with the measured data in the no-background-sound con-
dition (aggregated MAA = 13.79◦ in average), the ANOVA test
shows no significant difference in SNR = 0 (F1,154 = 0.25, p =
.61), SNR = 6 (F1,154 = 1.41, p = .24), and SNR = 12 (F1,154 =
0.72, p = .40) conditions, shown in Figure 3c. We compared all
collected data between left and right azimuthal eccentricity condi-
tions, visualized in Figure 3d. The ANOVA test (F2,243 = 0.32, p=
.56) indicates that the sign of azimuthal eccentricity (sign(a)) does
not have a significant effect on MAA. See Figure 10 for per-subject
results.

3.3 Discussion
The statistical analysis and visualization leads us to several find-
ings. First, the analysis doesn’t show the sign of azimuthal eccen-
tricity affects MAA significantly. This verifies our pre-study hy-
pothesis (MAA is symmetrical with respect to the zero azimuthal
eccentricity) and provides evidence for repeating the study in (a =
0) conditions. Second, the SNR doesn’t significantly affect spatial
audio localization sensitivity. This is likely due to the cocktail party
effect [1], in which background noises are filtered out when humans
pay attention to certain sound events. This discovery motivates us
to separate the heard audio into foreground sound and background
sound, in which the spatial localization sensitivities of the former
are not influenced by the latter. Third and most importantly, the
azimuthal eccentricity significantly changes the spatial audio per-
ception given the direction. This azimuth effect aligns with prior
work [30] and indicates the increasing difficulty for humans to dis-
tinguish audio spatial location at larger azimuthal eccentricities.

4 IMPLEMENTING PERCEPTUALLY-AWARE AUDIO CLUS-
TERING

The experimental results and statistical analysis from Section 3 in-
dicate the significant degradation of auditory acuity along farther
azimuthal eccentricities, independent of background sounds. The
findings aligned with prior discoveries, as discussed in Section 2.3,
verifying the correctness of our study’s data and proving its effec-
tiveness. This motivates us to further transform the quantified dis-
coveries toward a generalizable model and run-time algorithm that
adaptively clusters audio sources for enhanced computational effi-
ciency.

We found that the measured value of MAA varies across dif-
ferent individuals. In order to establish a robust model for all,
we included a percentile index P as an input to our model, with
a lower percentile corresponding to a more conservative discrimi-
nation threshold prediction. Therefore, given input P, we regressed
a specialized polynomial fP on the Pth percentile value of our mea-
sured MAA data distribution.

The observed data shows a non-linear increase in the discrim-
ination threshold of MAA in response to azimuthal eccentricities
(with 8.35◦ increase from a = 0◦ to a = 30◦, but 14.38◦ increase
from a = 30◦ to a = 60◦). Therefore, we fit a 2-degree polynomial,

fP(a) = e0,Pa2 + e1,Pa+ e2,P, (1)

to our MAA threshold data. The coefficients {e0,P,e1,P,e2,P} were
fitted by minimizing the squared error on the Pth percentile value of
our data collected in Section 3.1 as

min
{e0,P ,e1,P ,e2,P}

∥ fP(a)−MAA(a,P)∥2, (2)

where MAA(a,p) is the Pth percentile value of MAA measured at a
azimuthal eccentricity. Overall, our model can predict the minimum
audible angle threshold with multiple fitted 2-degree polynomials.

F(a, P) := fP(a), (3)
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Figure 4: Main study results per subject. The main study (as described in Section 3.1) shows the measured MAA (Y-axis) with regard to
azimuthal eccentricity (X-axis). The MAA increases as the azimuthal eccentricity is increased.

where F is the model, and a and P are the input azimuthal eccen-
tricity and percentile index, respectively. Our model F is visualized
at Figure 5.

Perceptual Sound Source Clustering Guided by the model,
we further design a perception-based clustering algorithm to im-
prove performance by reducing the number of audio sources over a
large azimuthal eccentricity range. We assumed the user’s focus is
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prediction of minimum audible angle interpolated across azimuthal
eccentricities and percentiles. The measured data from our percep-
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Perceptual Sound Source Clustering

1: function
2: P = GETPERCENTILE
3: D = GETFOCUSDIRECTION
4: for Si in Slist do
5: ▷ Slist includes all sound sources

6: Si.angle = cos−1
(

(S⃗i−⃗L)·D
∥S⃗i−⃗L∥∥D∥

)
7: end for
8: Slist .sort(key = lambda Si : Si.angle)
9: ▷ Sort Slist based on focus

10: Initialize Clusters
11: while Slist is not empty do
12: Initialize C
13: Take first S in Slist
14: T = F(aS, P)
15: ▷ aS is the azimuthal eccentricity of S
16: for each other S′ in Slist do
17: if a(S) is within T then
18: Add S′ to C
19: end if
20: end for
21: Add C to Clusters
22: Remove all sources in C from Slist
23: end while
24: return Clusters
25: end function

Figure 6: Pseudocode of our audio clustering implementation.

in the D direction. We cluster sound sources Si according to how
closely they align with D. Specifically, considering a sound source
S f which has minimum angular distance from D along the azimuth,
we cluster all sound sources Si with S f if they are within the range
predicted by our model,

aS f −∆θ < aSi < aS f +∆θ , ∀Si : ∆θ =
1
2

F(aS f , P) (4)

where aSi is the audio source’s azimuthal eccentricity. The detailed
clustering implementation is illustrated as pseudocode in Figure 6.
After determining the clusters, we characterized their spatial direc-
tions based on the sources within them. Similar to [59], we use
the intensity vi of an audio source as a criterion to place the source
direction of cluster C,

aC = ∑
i

aviSi , φC = ∑
i

φviSi (5)

where a, φ are the audio source’s azimuthal eccentricity and eleva-
tion to the listener, respectively. We apply this clustering algorithm
in a large scale simulation, described in Section 6.

5 APPLICATION CASE STUDY: ACCELERATING AUDIO
PROCESSING IN VR ENVIRONMENT

We evaluate the effectiveness and generalizability of our percep-
tual sound source clustering method (Figure 6) in a more realistic
scenario by conducting a psychophysical study in a different en-
vironmental setup, protocol, and audio stimuli compared to that
mentioned in Section 3. In particular, we measure users’ ability
to distinguish whether or not the audio sources are clustered.

Stimuli We simulated spatial audio with pyroomacoustics [49],
which uses an image-source model used in the prior art for sound
propagation prediction [21] and spatialized sound rendering in vir-
tual environments [36]. We placed two microphones 16.2 centime-
ters apart (measured as the average head breadth of men in [62]) to
simulate the distance between the two ears of participants. Visu-
alized in Figure 7b, participants were placed in a virtual room that
included a cat and a dog. The audio sources in the events were
the cat meowing and the dog barking. The audio events were sim-
ulated with two conditions: unclustered and clustered (shown in
Figure 7a). For unclustered audio event, the two audio sources
were spatially separated relative to the participant with a given de-
gree (M̂AA, based on our model prediction) and centered at a given
eccentricity (a). See both in “Conditions”. For clustered audio
event, the two audio sources were clustered at a. Since the au-
dio clustering algorithm runs per each interactive frame [51], our
method applies equally irrespective of whether the sound sources
and listeners are static or dynamic. Consequently, conducting our
experiment in a static scene does not compromise its generalization
to dynamic scenarios.

Participants and hardware Participants remained seated and
perceived audio event using the same headphones as in Section 3.1.
Users wore the Meta quest 3 to view the immersive virtual scene
(as shown in Figure 7b) while completing the task. We recruited
12 participants (ages 22-27, 7 female, 5 male) to perform the study.
None of the participants were aware of the research hypothesis.

Task As illustrated in Figure 7a and Figure 7b, the task was
a two-interval forced-choice (2IFC). In each trial, participants se-
quentially experienced two 2-second sound events (one using clus-
tered and another using unclustered) in a random order, with a
1-second pause in between. Participants were instructed to iden-
tify which event involved spatially separated sound sources (i.e.,
unclustered) by responding via keyboard.

Conditions We included two azimuthal eccentricities (a =
20◦,a = 40◦) that were not presented in the pilot study to addi-
tionally test our model’s ability to generalize to unseen conditions.
As shown in Figure 7a. we characterized the angular distance be-
tween two audio sources by our model prediction M̂AA = F(a, P)

(i.e. cat-dog pair were placed at the limit of M̂AA). By leveraging
the model, we used two percentile indices P to generate two lev-
els of M̂AA prediction, resulting in two clustering levels. At the
low clustering level (L-CLUSTER), we used the P = 10 percentile
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Figure 8: Application Study results. (a) shows the mean audio
processing time in clustered and unclustered audio events. The
time consumption was reduced by 50% after clustering the audio
sources. (b) shows the aggregated accuracy of participants cor-
rectly distinguishing the clustered and unclustered audio events. It
compares between L-CLUSTER (Low) and H-CLUSTER (High).
The 50% and 75% accuracy were presented as dotted lines in the
figure. Refer to Figure 11 for individualized results.

index to predict a conservative M̂AA threshold, in which most par-
ticipants could not distinguish whether the audio was clustered in
this range. At the high clustering level (H-CLUSTER), we used
the P = 90 percentile index to provide a higher M̂AA in which users
are more likely to perceive which audio event was clustered or not.

The study had 40 (2 azimuthal eccentricities × 2 M̂AA × 10
repeats) trials in total and took approximately 10 minutes for each
participant to complete.

Results Figure 8b shows all 12 of the participants’ aggregated
2IFC results. The mean accuracy of L-CLUSTER (48.3± 18.0%
at a = 20◦, and 54.1± 19.7% at a = 40◦) is near to random guess
(50%) for the 2IFC task. A binomial test with 50% hypothesized
probability shows the random guess null hypothesis cannot be re-
jected, with p ≫ .05 (p = .78 at a = 20◦, and p = .41 at a = 40◦).
In contrast, in H-CLUSTER, users were more likely to distinguish

the clustered condition and obtain higher accuracy (61.7±15.2% at
a= 20◦, and 68.3±16.7% at a= 40◦). The binomial test evidenced
that the results in H-CLUSTER are not based on random guess
(p = .01 at a = 20◦, and p < .01 at a = 40◦). We also observed
that the measured mean accuracy increases with azimuthal eccen-
tricity. However, a one-way within-subjects ANOVA didn’t show
this effect to be significant (F1,22 = 0.50, p = .48 in L-CLUSTER
and F1,22 = 0.95, p = .33 in H-CLUSTER). Visualized results for
each subject are shown in Figure 11 As shown in Figure 8a, the
processing time for pyroomacoustics to generate the audio of the
clustered event (0.034± 0.002 seconds) is double that of the un-
clustered event (0.068±0.004 seconds), and the aggregated mean
accuracy is 58.12±19.2%.

Discussion The statistical analysis indicates that participants
were unable to distinguish between the original unclustered audi-
tory space vs. the conservative clustering L-CLUSTER predicted
by our model (10th percentile index). While the more aggres-
sive clustering H-CLUSTER became more distinguishable than
random guesses, participants were still making uncertain choices
(65%).

These observations reveal that our perceptually-guided auditory
clustering can reduce computation time by 50%, without signifi-
cantly compromising the perceived auditory space. Meanwhile, in-
troducing the population percentile P to our model offers probabilis-
tic and controllable guidance on balancing cross-population signif-
icance with computational savings. This controllable knob allows
for the model’s applicability in auditory rendering applications that
are constrained by given computational resources, such as unteth-
ered VR/AR scenarios. Meanwhile, the differences in sound types
(cat meowing and dog barking) validate the model’s robustness to
the various types of audio stimuli.

6 SIMULATED PERFORMANCE ASSESSMENT

As verified by the user study in Section 5, our audio clustering
method is able to efficiently reduce the number of audio sources
without altering the user’s audio perception. Here, we measure the
method’s performance with a large-scale audio source clustering
simulation as a pressure test.

Audio source clustering simulation We randomly positioned
audio sources around the listener and clustered the audio sources
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Figure 9: Performance Evaluation. We simulated the usage of our
perceptual sound source clustering method, detailed in Figure 6.
The audio processing simulation was run 50 times, each time with
randomly placed audio sources. (a) presents the range and mean of
the time-saving ratio in our simulation, and (b) shows the range and
mean of the number of clusters being grouped from our method,
both as a function of the number of audio sources.

using our method, outlined in Figure 6. We assumed the listener’s
focus is on the zero azimuthal eccentricity direction in the simu-
lation. The ratio r of time saved during audio propagation can be
formalized as: r = 1−NC/NS, where NC and NS are the number of
clusters and sound sources, respectively. For each number of audio
sources, we randomized directions of arrival of the audio sources
50 times to simulate all possible spatial audio arrangements. The
results of this experiment are visualized in Figure 9.

Our source clustering method’s performance improves with the
number of audio sources NS, as shown in Figure 9a. The time-
saving ratio r increases from 57.8± 16.6% at NS = 15 to 94.92±
0.3% at NS = 300. Figure 9b presents the number of clusters NC be-
ing generated by our method across the number of sound sources.
The results show that our method can efficiently reduce 300 sound
sources to 15 clusters on average. We calculated the moving vari-
ance with a 10-step window to assess the convergence of NC. The
moving variance of the number of clusters NC decreases under 0.1
after NS = 53, indicating that NC tends to converge to a stationary
upper bound. It shows our method is able to merge a large number
of sound sources into a controllable number of clusters.

7 LIMITATIONS AND FUTURE WORK

Attention in audio targets. In our run-time audio source clus-
tering algorithm (summarized in Figure 6), we assume the knowl-
edge of listeners’ focus. For example, a video game player may
focus on the sound of an enemy’s steps to determine their location.
The heuristics provide us with the initial pivot points to perform
spatial clustering. However, in task-free applications, it is uncertain
how to determine where a user is attentive. In the future, we plan
to investigate solutions for estimating auditory saliency [25, 60],
which may shed light on adaptive weights of individual sources to
guide the clustering algorithm.

Multi-order audio. We estimate the audio’s direction based on
azimuthal eccentricities without spatial reverb. Although this esti-
mation measures the most significant order, the accuracy also de-
pends on how reflective the environment geometry and materials
are. Therefore, future work could consider the higher-order post-
reverb audio eccentricities as a function of spatial layout [27] and
barrier materials [47].

Additional auditory characteristics. While all audio sources
were full spectrum white noise in Section 3, factors such as audio
frequency and motion may also influence the perceptual sensitivity
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Figure 10: Generalizability study results per subject. Generalizabil-
ity study (as described in Section 3.2) shows the measured MAA in
various SNR conditions. Raw data illustrates the measured MAA
(Y-axis) with regard to azimuthal eccentricity (X-axis) per subject.
The measured MAA is not significantly influenced by SNR.
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Figure 11: Application study results per subject. Application study
(as described in Section 5) shows the accuracy (Y-axis) of partic-
ipant’s responses with regard to clustering level (X-axis) between
L-CLUSTER and H-CLUSTER. In each plot, 2 bars on the left
were measured at 20 degrees, with the others at 40.

to source direction. We envision future investigations of these fac-
tors may further enhance the accuracy of the modeling as well as
clustering efficiency, but is beyond the scope of this work.

Age limitations of the user group Across the studies, the par-
ticipants’ ages were in the young adult range (18-31). [2] found that
other age groups were less accurate at locating visual and auditory
stimuli than young adults, indicating that our model could predict
conservative MAA considering all ages. We will consider studying
the MAA with a larger age range.

Selections of azimuthal eccentricity We studied the az-
imuthal eccentricity with a sample range (a = 0◦,±30◦,±60◦) that
aligns with visual field of view [22]. Extending the sample ranges
of audio events out of the field of view or even behind the user is
an exciting future direction, but beyond the scope of this research
as the first attempt to transform the idea of “foveation” from visual
to auditory.

8 CONCLUSION

In this paper, we present the first perceptually guided acoustic
“foveation” approach that leverages the non-uniform spatial sen-
sitivity across the azimuthal plane. We derived a computational
model and a sound source clustering algorithm using the data col-
lected from our psychophysical studies. Our clustering technique
can save 50% on audio computation while not compromising lis-
teners’ perceived sound space evaluated in our user study. We hope
the research will create future collaboration in the community to de-
velop comprehensive and multimodal immersive systems that opti-
mize for human perception, beyond the previously studied vision.
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