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Fig. 7. Computational model. An analytical model is fit to our user study

data (Fixed TMO: ⃝, Content-Aware TMO: △), and rendered as a 3D

surface for both TMOs we studied. Slices of the surface, one at constant

320:1 contrast and the other at 125 nits, are plotted at the intersection of

grey planes and shown to right. Scatter points are scaled user study data.

displayed in Appendix C. Note that both Equation (4) and Equa-

tion (5) behave monotonically with respect to decreases in ! min and

increased ! max, but the multiplication of the two in Equation (6)

can result in lower JOD scores for a combination of high ! min and

high ! max (low contrast, high peak luminance), which is a trend we

hoped to capture given the same observation in our study data.

Our model fit has a root mean square error (RMSE) of 0.23 and

0.16 (measured vs. predicted JOD scores) for the Fixed TMO and

Content-Aware TMO , respectively. A render of the 3D surface fit

is shown in Figure 7, and slices along each axis are to the right. In

Fig. 6 and Supplement Appendix C.1, we plot slices for all conditions.

5.1 Subjective Model Evaluation

A study with 12 additional participants (ages 22-45, 7 male) was

conducted to validate that our model generalizes to a headmounted

VR scenario. This study employed different scenes, tested different

display parameters, and followed a new experiment protocol from

the main study to ensure thorough validation of the model.

As commercially available VR headsets have significant limita-

tions in terms of contrast and peak luminance, we opted to use

a custom HDR VR HMD prototype. Our headset is similar to the

one described by Matsuda et al. [2022b]. An achromatic doublet is

placed in the viewing path, so the dynamic range of the content is

distorted based on its characteristics. Because no standard protocol

exists for VR metrology that would accurately capture this effect,

we employed a custom process. Simultaneous contrast is found by

measuring the luminance of a checkerboard test pattern with vary-

ing spatial frequencies, using a CS-2000 spectroradiometer. Contrast

was defined by the luminance measurement of a white divided by

a black checker, and found to be between 45:1 and 340,000:1 de-

pending on spatial frequency of the measured pattern. The peak

luminance of the display was 1,000 nits for all measurements.

To get a representative value of simultaneous contrast for stimuli

used in our study, we performed a through-the-lens measurement

of the luminance of 3◦ white and black square patches placed in a

Fig. 8. Validation study results and measurement. User study results (left)

are displayed, with study rating (MOS) on theG-axis, and model predictions

(JOD) on the ~-axis. Scatter colors represent peak luminance, and larger

markers correspond to higher scene contrast. Horizontal error bars represent

standard deviation of scores (SOS). The contrast of each scene displayed

in HDR VR was found by measuring the luminance of a 3◦ square (right).
Image credit Greg Zaal.

bright region of each scene (see Figure 8, right). Contrast measure-

ments were made for scenes tone-mapped to 60, 250, and 750 nits

peak luminance using the Fixed TMO. Exact measurement data are

displayed in Appendix G.3. The contrast variable plugged into our

model for this validation correspond to these ground-truth mea-

surements for the 3 peak luminances, rather than via simulation of

black level as done in the main study.

Six 360◦ HDRI probes (Supplement Appendix G.2) were used in

our study. In total, we have (6 scenes) × (3 peak luminances) = 18

conditions. We conducted 4 repeats for each trial, following the

recommendations of Perez-Ortiz and Mantiuk [2017], for a total of

72 trials per user. To make tone-mapped stimuli viewable in real-

time with head tracking, we stored the Fixed TMO as a lookup table

implemented as a Unity shader (see Supplement Appendix G.4).

We followed the ITU P.910 standard for rating-based studies

[Installations and Line 1999]. A user is first presented with the

reference HDRI (1,000 nits peak luminance), and is able to switch

between it and a tone-mapped scene. Participants were allowed

to view scenes as they wish, with natural head movements. After

viewing both images, the user is then asked to rate the test image

with respect to the reference on a five-point scale.

Ratings averaged across repeats were converted to mean opinion

scores (MOS) using the Netflix Sureal library [Li and Bampis 2017;

Li et al. 2020]. Figure 8 shows the resulting MOS scores plotted

against the JOD scores predicted by our model. Linear (Pearson

A= 0”813• ?≪ ”01) and rank-order (Spearman d = 0”820• ?≪ ”01)
correlations between study ratings and model predictions are strong

[Moore and Kirkland 2007], indicating that our model can predict

the results of the headmounted VR setting validation study well.

Further discussion can be found in Appendix G.

6 Applications

In this section, we describe some practical applications of our model.

6.1 Predicting DisplayQuality

Given a display’s peak luminance and contrast, our model can pre-

dict its subjective quality score (in JOD units). This is demonstrated
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Fig. 9. Display quality predicted by our model. Our computational model (fit to the Content-Aware TMO data) is evaluated for all combinations of peak

luminance and contrast to create a plot of iso-JOD contours. The conditions sampled in our user study are plotted as black crosses. Here, the baseline (0 JODs,

red X) is set to parameters plausible for commercial VR display (100 nits, 64:1 contrast). Iso-JOD contours are plotted at 0.5 JOD steps, and for 5 tiers in the

VESA DisplayHDR standard (circle points). An optimal path (dashed line) along the model’s gradient is plotted, starting from the baseline. Several additional

display technologies are plotted as asterisks, and the reference monitor used in our study as a red star.

Fig. 10. Iso-JOD contours. A curve evaluated at constant JOD value (here

2.04 JODs) is plotted as a blue line. The intersections of this contour line at

100% and 75% power consumption, assuming a reference display with VESA

DisplayHDR 400 parameters (400 nits, 1,300:1), are plotted as dashed lines.

in Figure 9, where a JOD score is predicted for all parameter combi-

nations. Iso-JOD contours are plotted at 0.5 JOD steps, or around a

63.2% preference. Note that the baseline is set to plausible parameters

for a commercial VR display (100 nits, 64:1) [Mehrfard et al. 2019].

Similarly, we can predict the expected perceptual quality of each

tier in the VESA DisplayHDR standard. A set of commercially avail-

able non-VR displays are plotted for reference (asterisks), including

theater projectors, TVs, laptops displays, and monitors, enabling

perceptual comparisons between different display technologies and

standards (see Appendix H for details).

6.2 Design Tradeoffs

Commercial display design involves evaluating tradeoffs in perfor-

mance, production cost, power consumption, etc. For example, if

designing a VR headset with the goal of improving the commercial

VR baseline in our plot by 2 JOD units (approx. VESA DisplayHDR

400); combinations of contrast and peak luminance which satisfy

this improvement are plotted as a blue curve in Figure 9, with a

zoom-in plotted in Figure 10. As an example, a display with 400 nits

peak and 1,300:1 contrast would provide this improvement, but so

would one with 300 nits peak and 5,580:1 contrast. If prioritizing

battery life, the option with lower peak luminance may be prefer-

able. However, the latter choice may be more appealing if optical

elements that allow for high contrast are expensive to manufacture.

For standalone VR headsets, power consumption is especially

important: up to 40% of an XR device’s power is consumed by the

display component [Anand et al. 2011].We paired our display quality

model with the LCD display power usage prediction defined by Chen

et al. [2024]. In Figure 10, we show that reducing the peak luminance

of a reference display (yellow marker) will consume proportionately

less power, but to compensate for the loss of visual quality and

maintain a constant JOD score, contrast must be increased, with

black level reduced from 0.3 nits to 0.05 nits.
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7 Limitations & Future Work

ISO-JOD curves for traditional displays were evaluated using our

model, given contrast and luminance. In addition, while our study

simulated VR with HDR monitors in a haploscope setting, the effect

of viewing conditions, optics, etc. would have to be assessed. This

work could serve as a framework for future study targeting tradi-

tional displays, which could confirm our model’s generalizability.

Our display simulation uniform black level increase which is

realistic for LCD displays, but only approximates the effects of VR

optics on the content. In our validation study, we showed our model

works for VR HDR with optics, but contrast had to be measured

per scene, which is impractical for large-scale application. Future

improvements to VR metrology and optical modeling would allow

our model to be applied to arbitrary VR optics scenarios. In addition,

exploring the perceptual trade-offs of different backlight or optical

architectures would be an interesting follow-up to this work.

Our study employed a practical tone mapping pipeline, following

modern recommendations. A very different TMOmay lead to altered

results, in which case it may be useful to repeat this study.

8 Conclusion

We conducted a large-scale psychophysical study on subjective

preferences in VR, measuring the impact of peak luminance and

contrast, the two main variables defining HDR display. Our study

quantified the preference for higher peak luminance and contrast,

and suggested that preference saturates at high values. These results

were captured via a computational model, which was validated with

a second subjective study. Finally, we discussed how this model can

be used to evaluate display standards, guide display design, and

quantify trade-offs between quality and display power.
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