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Supplementary Materials for1

Novel View Synthesis for 3D Computer-Generated Holograms Using Deep2

Neural Fields3

1. Scene Acquisition and Reference Measurements4

Scenes used throughout the manuscript were captured using an iPhone 12 Pro for training NHF.5

Ground-truth focal stacks (only used for qualitative comparison) were captured with a Nikon6

D3500 DSLR camera.7

2. Training Details8

The NHF neural network is trained with an Adam optimizer and cosine annealing learning rate9

schedule. For all results in the paper, we use a learning rate of 1𝑒-3, VGG loss weight of 2.5𝑒-2,10

and L2 weight of 1.0. We used a 90:10 train/test split; all results are computed on the test dataset.11

In a network with 5 upsampling and 5 downsampling layers, 64 dimensions, and 4 depth planes12

used in the focal stack loss, the training time takes about 3.5 hours to complete, or 130 training13

epochs. All experimental code is implemented with PyTorch. Model training and evaluation14

were computed on a single graphics processing unit, the NVIDIA RTX 8000, provided by the15

NYU Greene High-Performance Computing cluster.16

3. Learning Ablation Studies17

Training NHF involves two loss terms, VGG and L2. The two terms jointly enhance the inferred18

image quality. As visualized in Figure 1, we conducted an ablation study to quantitatively19

measure their effectiveness. Including both L2 and VGG improves quality by approximately 9 dB20

over VGG only and 2 dB over L2 only. The analysis indicates the quality enhancements achieved21

by jointly optimizing the NHF neural network with feature-based (VGG) and pixel-wise (L2)22

image loss functions.23

4. Raw Smartphone Captures24

Figure 2 visualized several sampled original scene captures using an iPhone 12 Pro. Such freely25

captured images are directly fed to NHF to generate free-viewing 3D holograms.26

5. Additional Results27

Figures 3, 4, 5, 6, 7 show additional simulated and experimental hardware-captured results with28

focal stacks. Figure 9 shows monochromatic results, for each RGB laser channel for both near29

and far focus. Figure 10 shows an example hologram output of the light field to hologram iSTFT30

transform.31

6. Algorithmic Implementation32

Pseudocode is defined in Algorithm 1.33
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Fig. 1. Ablation of loss functions. (A) Quantitative results of ablation study for loss
function terms. Error bars represent one standard deviation. (B) Qualitative results of
ablation study, with near depth in focus.

Fig. 2. Example mobile phone captures. Captures of the Shelf scene and the Pile
scene.
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Fig. 3. King scene. Simulated and experimental results predicted by NHF for the King
scene.
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Fig. 4. Pile scene. Simulated and experimental results predicted by NHF for the Pile
scene.

Algorithm 1: NHF Pipeline
Input: I : set of 𝑁 input camera captures

1 C← SfM(I) // estimate camera parameters from input images with a SfM

pipeline such as COLMAP

2 𝑓 ←trainGaussianSplatting(I, C) // train scene representation

/* Generate NHF training dataset */

init: Ir
init: H
init: 𝛾𝑥 , 𝛾𝑦 , 𝑁

3 for cam : C do
init: 𝐿

4 for j : range(−𝑁 , 𝑁) do
5 for k : range(−𝑁 , 𝑁) do

/* Render light field elemental view from scene representation

(Eq. 2) */

6 t( 𝑗 ,𝑘 ) ← 𝑐𝑎𝑚.t + 𝑐𝑎𝑚.R
©­­­­«
𝑗𝛾𝑥

𝑘𝛾𝑦
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ª®®®®¬
7 𝐿 ( 𝑗 , 𝑘) ← 𝑓

(
𝑐𝑎𝑚.R, t( 𝑗 ,𝑘 )

)
8 Ir [𝑐𝑎𝑚] ← 𝐿 (0, 0)
9 H[𝑐𝑎𝑚] ← STFT−1 (𝐿)
/* Train NHF CNN */

init: MΘ

10 while not converged do
11 for cam : C do
12 Θ← Θ − 𝛼 · 𝜕

𝜕Θ

∑
𝑧 L (P(H[𝑐𝑎𝑚], 𝑧),P(MΘ (Ir [𝑐𝑎𝑚]), 𝑧))
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Fig. 5. Pile 2 scene. Simulated and experimental results predicted by NHF for the Pile
2 scene.
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Fig. 6. Plant scene. Simulated and experimental results predicted by NHF for the
Plant scene.
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Fig. 7. Shelf scene. Simulated and experimental results predicted by NHF for the
Shelf scene.



Fig. 8. Prototype holographic display.



Fig. 9. Monochromatic results are shown here for each laser. Left column is near focus,
and right is far focus.

Fig. 10. Holographic Stereogram. Here, we show the output of the holographic
stereogram method (inverse STFT), which converts light field to hologram. In this
figure, the amplitude is shown on the left and phase to the right.


